
IBM Security Key Lifecycle Manager for z/OS
Version 1.1

Planning, and User's Guide

SC14-7628-00

���

IBM Security Key Lifecycle Manager for z/OS
Version 1.1

Planning, and User's Guide

SC14-7628-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 153.

April 2011

This edition applies to version 1, release 1 of IBM Security Key Lifecycle Manager for z/OS (product number
5698-B35) and to all subsequent releases and modifications.

© Copyright IBM Corporation 2006, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this Publication ix
Intended Audience ix
Publications ix

Related Publications ix
Accessibility xi
Accessing publications online xi

Support information xiii
Conventions used in this publication xiii

Typeface conventions xiii

Chapter 1. Product Overview. 1
Security Key Lifecycle Manager for z/OS
Components 2
Technical overview 3

Encryption-enabled 3592 and LTO tape drives . . 4
Enterprise Storage - IBM System Storage DS8000
(2107, 242x) 4
Keys overview. 4

Managing Encryption 8
Application-Managed Tape Encryption 11
System-Managed Tape Encryption 12
Library-Managed Tape Encryption. 14

Audit Records 15

Chapter 2. Planning your Security Key
Lifecycle Manager for z/OS
Environment 17
Hardware and Software Requirements 17

Java requirements 17
z/OS Solution Components 17
z/VM Solution Components. 19

Encryption Setup Tasks at a Glance 20
Security Key Lifecycle for z/OS Manager Setup
Tasks 20
Planning for Application-Managed Tape
Encryption 21
Planning for System-Managed Tape Encryption 21
Planning for Library-Managed Tape Encryption 23
TS1120, TS1130, and TS1140 Tape Drive
Installation Process for Encryption. 23
LTO Ultrium 4 Tape Drive and LTO Ultrium 5
Tape Drive Installation Process for Encryption . . 25
DS8000 Installation Process for Encryption . . . 25

Keystore Considerations 26
Importance of keys and certificates 26
Backing up Keystore Data 33
Multiple Key Lifecycle Manager for z/OS for
redundancy 34
Security Key Lifecycle Manager for z/OS Server
Configurations 34

Which Keystore is Right for You 36
Managing Keystores 38

Disaster Recovery Site Considerations 39
Considerations for Sharing Encrypted Tapes Off-site 40

Chapter 3. Installing the Security Key
Lifecycle Manager for z/OS and
Keystores 43
Installing Java SDK and verifying the version . . . 43
Copying the unrestricted policy files 44
Add the Java Hardware Provider (Only if Using
ICSF) 45
Setting up a user ID to run the Security Key
Lifecycle Manager for z/OS 45
Obtaining Digital Certificates 46

Creating Your Own Public and Private Key Pair
and Corresponding Certificate 46
Using Certificates You Already Have 46
Generating a new public and private key pair
and corresponding certificate 47
Obtaining a public key and corresponding
certificate from a business partner 47
Examples of How to Set Up Digital Certificates 47

Creating Symmetric Keys for Use with LTO Ultrium
4 and LTO Ultrium 5 Drives 60
Setting up the Security Key Lifecycle Manager for
z/OS keystore to communicate with tape drives . . 61
Setting up the Security Key Lifecycle Manager for
z/OS configuration file 64
Quick Test Running Security Key Lifecycle Manager
for z/OS Under USS 66
Setting up and running Security Key Lifecycle
Manager for z/OS in Production Mode 67
Generating Keys and Aliases for Encryption on LTO
Ultrium 4 and LTO Ultrium 5 72
Creating and managing key groups 76

Chapter 4. Configuring the Security
Key Lifecycle Manager for z/OS 79
Configuration strategies 79

Automatically update device table 79
Global default alias (key label) for TS1120,
TS1130, and TS1140 tape drive writes 80
Synchronizing data between two Security Key
Lifecycle Manager for z/OS servers 80

If you are using hardware cryptography. 82
If you are not using hardware cryptography . . . 82
Configuration Basics 82
Configuration Properties 84
Creating Security Key Lifecycle Manager for z/OS
configuration file 86
Configuring Security Key Lifecycle Manager for
z/OS for LTO Ultrium 4 and LTO Ultrium 5
encryption 87
z/OS Java Levels 88

© Copyright IBM Corp. 2006, 2011 iii

Note about z/OS configuration steps for z/OS
in-band encrypted tape drive 88

Chapter 5. Administering the Security
Key Lifecycle Manager for z/OS 89
Migrating Encryption Key Manager to Security Key
Lifecycle Manager for z/OS 89

Solving Security Key Lifecycle Manager for z/OS
Startup Problems 91

Command Line Interface Commands 92

Chapter 6. Problem Determination . . . 99
Check these important files for Security Key
Lifecycle Manager for z/OS server problems . . . 102

Viewing the STDOUT and STDERR logs . . . 103
Debugging Security Key Lifecycle Manager for
z/OS Server problems 103
Security Key Lifecycle Manager for z/OS -
Reported Errors 106
Whom Do I Contact for IBM Support? 109
Messages 110

Failed to Add Drive 110
Failed to Archive the Log File 110
Failed to Delete the Drive Entry 111
Failed to Import 111
File Name Cannot be Null 111
File Size Limit Cannot be a Negative Number 112
No Data to be Synchronized 112
Invalid Input 112
Invalid SSL Port Number in Configuration File 112
Invalid TCP Port Number in Configuration File 113
Must specify SSL port number in configuration
file 113
Must Specify TCP Port Number in
Configuration File 114
Server failed to start 114
Sync failed 114
The specified audit log file is Read Only . . . 115
Unable to load the Admin keystore 115
Unable to load the keystore. 115
Unable to load the transport keystore 116

Chapter 7. Audit Records 117
Audit Overview 117
Audit Configuration Parameters 117

Audit.event.types 118
Audit.event.outcome 118

Audit.handler.class 118
Audit.eventQueue.max 119
Audit.handler.file.directory 119
Audit.handler.file.size 119
Audit.handler.file.name 120
Audit.handler.file.multithreads 120
Audit.handler.file.threadlifespan 120

Configuring the System Management Facilities
Audit log. 121
Audit Record Format 123

Audit points. 123
Audit Record Attributes 124

Audited Events. 125

Chapter 8. Using Metadata. 127

Appendix A. Sample Files 131
Sample startup daemon script 131
Sample server configuration properties files . . . 131

Appendix B. Configuration Properties
Files 133
Server configuration properties file 133

Appendix C. Quick Start Guides . . . 145
Quick Start Guide for TS1120, TS1130, and TS1140
Tape Drives 145

Using Security Key Lifecycle Manager for z/OS
with TS1120, TS1130, and TS1140 Tape Drives . 145

Quick Start Guide for LTO Ultrium 4 and LTO
Ultrium 5. 146

Using Security Key Lifecycle Manager for z/OS
with LTO Ultrium 4 and LTO 5 147

Quick Start Guide for DS8000 148
Using Security Key Lifecycle Manager for z/OS
with DS8000. 149

Appendix D. Frequently Asked
Questions 151

Notices 153

Glossary 157

Index 159

iv IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Figures

1. The four main components of Security Key
Lifecycle Manager for z/OS 3

2. Encryption Using both Symmetric and
Asymmetric Encryption Keys 6

3. Encryption Using only Symmetric Encryption
Keys 7

4. Three possible locations for encryption policy
engine and key management. 10

5. In-band encryption key flow 13
6. Out-of-band encryption key flow 14
7. How the Security Key Lifecycle Manager for

z/OS Responds to TS1120, TS1130, and TS1140
Tape Drive Requests for Encryption Write
Operation 28

8. How the Security Key Lifecycle Manager for
z/OS Responds to TS1120, TS1130. and TS1140
Tape Drive Requests for Encryption Read
Operation 29

9. LTO Ultrium 4 Tape Drive and LTO Ultrium 5
Request for Encryption Write Operation . . . 30

10. LTO Ultrium 4 and LTO Ultrium 5 Tape Drive
Request for Encryption Read Operation . . . 31

11. DS8000 Request for Encryption Write
Operation 32

12. DS8000 Request for Encryption Read
Operation 33

13. Single Server Configuration 35
14. Two Servers with Shared Configurations 35
15. Two Servers with Different Configurations

Accessing the Same Devices 36

© Copyright IBM Corp. 2006, 2011 v

vi IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Tables

1. Encryption Key Summary 8
2. Security Key Lifecycle Manager for z/OS

Minimum Software Requirements for z/OS . . 17
3. Control Unit Requirements for z/OS 18
4. Virtualization Engine TS7700 Connected

Library Requirements for z/OS 18
5. Tape Library Requirements for z/OS 19
6. Tape Drive Requirements for z/OS. 19
7. Allowed alias and key label pairs 27
8. Summary of Supported Keystores 36

9. requireHardwareProtectionForSymmetricKeys
property 86

10. Errors that are reported by the Key Lifecycle
Manager 106

11. IBM Support Contacts 109
12. Audit record types that the Security Key

Lifecycle Manager for z/OS writes to audit
files 123

13. Audit record types by audited event 125
14. Metadata Query Output Format 128

© Copyright IBM Corp. 2006, 2011 vii

viii IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

About this Publication

This book contains information to help you install, configure, and use IBM®

Security Key Lifecycle Manager for z/OS. It includes concepts and procedures
pertaining to:
v Encryption on the IBM System Storage® TS1120, TS1130, TS1140, DS8000® Turbo

drive, IBM LTO Ultrium 4 Tape Drive and IBM LTO Ultrium 5 Tape Drive.
v Cryptographic keys
v Digital certificates

Intended Audience
This book is intended for storage and security administrators responsible for
security and backup of vital data, and anyone assisting in the setup and
maintenance of Security Key Lifecycle Manager for z/OS servers in the operating
environment. It assumes the reader has a working knowledge of storage devices
and networks.

Publications
Read the descriptions of the product library and the related publications to
determine which publications you might find helpful. After you determine the
publications you need, see the instructions for accessing publications online.

Related Publications
The following publications provide information related to encryption on tape
drives:

IBM System Storage TS1120 and TS1130 Tape Drive and
Controller Publications
v IBM System Storage TS1120 Tape Drive and Controller Operator Guide, GA32-0556
v IBM System Storage TS1120 and TS1130 Tape Drives and TS1120 Controller

Introduction and Planning Guide, GA32-0555-04
v IBM System Storage TS1120 Tape Drive SCSI Reference, GA32-0562
v IBM TotalStorage Enterprise Silo Compatible Tape Frame 3592 Introduction, Planning,

and User's Guide, GA32-0463

IBM LTO Ultrium 4 Tape Drive Publications
v IBM LTO Ultrium 4 Tape Drive Setup, Operator, and Service Guide, GA27-2102

IBM System Storage TS3500 Tape Library Publications
v IBM System Storage TS3500 Tape Library Operator Guide, GA32-0560
v IBM System Storage TS3500 Tape Library Introduction and Planning Guide,

GA32-0559

IBM Virtualization Engine TS7700 Publications
v IBM Virtualization Engine TS7700 Series Introduction and Planning Guide,

GA32-0567

© Copyright IBM Corp. 2006, 2011 ix

IBM 3953 Tape System Publications
v IBM 3953 Library Manager Model L05 Operator Guide, GA32-0558
v IBM 3953 Tape System Introduction and Planning Guide, GA32-0557

IBM TotalStorage Enterprise Automated Tape Library (3494)
Publications
v IBM TotalStorage Automated Tape Library (3494) Introduction and Planning Guide,

GA32-0448
v IBM TotalStorage Automated Tape Library (3494) Operator's Guide, GA32-0449

zSeries—S390 Publications
v IBM eServer™ zSeries 900 Platform Reference Guide, G326-3092
v Introduction to IBM S/390® FICON, SG24-5176 (IBM Redbook).
v S/390 System Overview Parallel Enterprise Server — Generation 5, GA22-7158
v S/390 System Overview Parallel Enterprise Server — Generation 6, GA22-1030

IBM Fibre Channel Publications
v IBM TotalStorage SAN Switch 2109 Model F16 Installation and Service Guide,

SY27-7623
v IBM Fiber-Optic Channel Link Planning and Installation, GA32-0367

IBM FICON Publications
v FICON (FCV Mode) Planning Guide, SG24-5445-00 (IBM Redbook).
v Planning for: Fiber Optic Links (ESCON®, FICON, Coupling Links, and Open system

Adapters), GA23-0367
v Maintenance Information for: Fiber Optic Links (ESCON, FICON, Coupling Links, and

Open System Adapters), SY27-2597
v Fiber Channel Connection (FICON) I/O Interface Physical Layer, SA24-7172
v Introduction to IBM System/390® FICON, SG24-5176
v Planning for the ED-5000 Enterprise Fibre Channel Director

v IBM eServer zSeries Connectivity Handbook, SG24-5444
v IBM Tape Solutions for Storage Area Networks and FICON, SG24-5474

Related Software Publications
For information regarding software related to the IBM 3592 Tape System, refer to:
v IBM Tape Device Drivers Installation and User's Guide, GC35-0154
v Basic Tape Library Support User's Guide and Reference, SC26-7016
v Environmental Record Editing and Printing (EREP) Program User's Guide and

Reference, GC35-0151
v IBM Tivoli Storage Manager for AIX® Administrator's Guide, GC32-0768
v z/OS DFSMS Introduction, SC26-7397
v z/OS DFSMS Object Access Method Planning, Installation, and Storage Administration

Guide for Tape Libraries, SC35-0427
v z/OS DFSMS Software Support for IBM System Storage TS1130 and TS1120 Tape

Drives (3592), SC26-7514
v z/OS Migration, GA22-7499.
v z/OS Security Server RACF Security Administrator's Guide, SA22-7683
v z/OS Security Server RACF Command Language Reference, SA22-7687
v z/OS Cryptographic Services Integrated Cryptographic Service Facility System

Programmer's Guide, SA22-7520

x IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

v z/OS Cryptographic Services Integrated Cryptographic Service Facility Administrator's
Guide, SA22-7521

v z/OS Cryptographic Services Integrated Cryptographic Service Facility Application
Programmer's Guide, SA22-7522

v z/OS Cryptographic Services System Secure Sockets Layer Programming , SC24-5901
v z/VM General Information Version 4 Release 3.0, GC24-5991
v z/VM CP Planning and Administration, SC24-6083
v z/VM CP Commands and Utilities, SC24-6081
v IBM eServer™ zSeries® 900 Platform Reference Guide, G326-3092
v Introduction to IBM S/390® FICON®, SG24-5176 (IBM Redbook) G326-3092
v S/390 System Overview Parallel Enterprise Server — Generation 5, GA22-7158
v S/390 System Overview Parallel Enterprise Server — Generation 6, GA22-1030

Other Publications
v American National Standard Institute Small Computer System Interface X3T9.2/86-109

X3.180, X3B5/91-173C, X3B5/91-305, X3.131-199X Revision 10H, and
X3T9.9/91-11 Revision 1

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The publications
for this product are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. Use assistive technologies, such as
screen-reader software and digital speech synthesizer, to hear what is displayed on
the document. Consult the product documentation of the assistive technology for
details on using those technologies with this product.

Accessing publications online
The publications for this product are available online in Portable Document Format
(PDF) or Hypertext Markup Language (HTML) format, or both in the Tivoli®

software library.

The Tivoli software library is located at http://publib.boulder.ibm.com/tividd/td/
tdprodlist.html.

To locate product publications in the library, click the first letter of the product
name or scroll until you find the product name. Click the product name. Product
publications can include release notes, installation guides, user's guides,
administrator's guides, and developer's references.

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Documentation Central
Web site at http://www.ibm.com/tivoli/documentation.

Note: To ensure proper printing of PDF publications, select the Fit to page check
box in the Adobe Acrobat Print window (which is available when you click File >
Print).

You can also locate publications at http://www.elink.ibmlink.ibm.com/
publications/servlet/pbi.wss.

About this Publication xi

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://www.ibm.com/tivoli/documentation
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

IBM Java Security Components and Keystores
v Overview technical article: http://www.ibm.com/developerworks/library/j-

ibmsecurity.html

v SDK 5.0 : http://www.ibm.com/developerworks/java/jdk/security/50/

v SDK 6.0 : http://www.ibm.com/developerworks/java/jdk/security/60/

v hwkeytool: http://www.ibm.com/servers/eserver/zseries/software/java/
hwkeytool.html

v ikeyman: For ikeyman and the keytool user guide: SDK 5.0 or SDK 6.0 links
above

v For additional information specific to z/OS®: http://www.ibm.com/servers/
eserver/zseries/software/java/

IBM Storage Media Support
The following URL provides access to current regional and country-specific IBM
addresses and telephone numbers.
v http://www.storage.ibm.com/media/distributors

IBM TotalStorage Enterprise Tape System 3592 Support
For general information about the 3592 Tape System, visit the following URL:
v http://www.ibm.com/servers/storage/tape/3592/index.html

For general information about the TS1120 Tape Drive, visit the following URL:
v http://www.ibm.com/servers/storage/tape/ts1120/index.html

For information about supported servers for the 3592 Tape System and TS1120 tape
Drive, visit the following URL:
v http://www.ibm.com/servers/storage/tape/compatibility/pdf/3592_interop.pdf

The following URLs provide access to additional current information related to
3592 Tape System.

Device Driver Support: To access the 3592 Firmware and Device Driver Matrix,
visit the following URL:
v http://www.ibm.com/servers/storage/support/tape/3592/downloading.html

To access the TS1120 Firmware and Device Driver Matrix, visit the following URL:
v http://www.ibm.com/servers/storage/support/tape/ts1120/downloading.html

You can download device driver software and read documentation about various
device drivers at the following URL:
v ftp://ftp.software.ibm.com/storage/devdrvr/

IBM Virtualization Engine TS7700 Encryption Support: White paper: IBM
Virtualization Engine TS7700 Series Encryption Overview available at
v http://www.ibm.com/support/docview.wss?&uid=ssg1S4000504

IBM Network Integration and Deployment Services: The following URL
provides information about connectivity and the integration of cabling systems.
v http://www.ibm.com/services/networking/integration

IBM Tape Storage Publications: Use this URL for IBM Hardware product
documents in a PDF format for viewing and printing.
v http://www.ibm.com/servers/storage/tape/resource-library.html#publications

xii IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://www.ibm.com/developerworks/library/j-ibmsecurity.html
http://www.ibm.com/developerworks/library/j-ibmsecurity.html
http://www.ibm.com/developerworks/java/jdk/security/50/
http://www.ibm.com/developerworks/java/jdk/security/60/
http://www.ibm.com/servers/eserver/zseries/software/java/hwkeytool.html
http://www.ibm.com/servers/eserver/zseries/software/java/hwkeytool.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.storage.ibm.com/media/distributors
http://www.ibm.com/servers/storage/tape/3592/index.html
http://www.ibm.com/servers/storage/tape/ts1120/index.html
http://www.ibm.com/servers/storage/tape/compatibility/pdf/3592_interop.pdf
http://www.ibm.com/servers/storage/support/tape/3592/downloading.html
http://www.ibm.com/servers/storage/support/tape/ts1120/downloading.html
ftp://ftp.software.ibm.com/storage/devdrvr/
http://www.ibm.com/support/docview.wss?&uid=ssg1S4000504
http://www.ibm.com/services/networking/integration
http://www.ibm.com/servers/storage/tape/resource-library.html#publications

SAN Fabric: This link provides information on high-performance switches and
gateways.
v http://www-03.ibm.com/systems/storage/product/

I/O Connectivity: This link provides updated information regarding FICON® and
fibre channel connectivity.
v http://www.ibm.com/servers/eserver/zseries/connectivity

Redbooks: Use this URL to access the IBM Redbooks®:
v http://www.redbooks.ibm.com/

Vendor Support: These URLs provide compatibility information in PDF format
for implementing software, servers, and operating systems with IBM tape drives
and libraries.
v For TS1120: http://www.ibm.com/servers/storage/tape/compatibility/pdf/

ts1120_isv_matrix.pdf

v For 3592: http://www.ibm.com/servers/storage/tape/compatibility/pdf/
3592_isv_matrix.pdf

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Access the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html .

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This information uses these typeface conventions.

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

About this Publication xiii

http://www-03.ibm.com/systems/storage/product/
http://www.ibm.com/servers/eserver/zseries/connectivity
http://www.redbooks.ibm.com/
http://www.ibm.com/servers/storage/tape/compatibility/pdf/ts1120_isv_matrix.pdf
http://www.ibm.com/servers/storage/tape/compatibility/pdf/ts1120_isv_matrix.pdf
http://www.ibm.com/servers/storage/tape/compatibility/pdf/3592_isv_matrix.pdf
http://www.ibm.com/servers/storage/tape/compatibility/pdf/3592_isv_matrix.pdf
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

xiv IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 1. Product Overview

The Product Overview topic explains the capabilities of the product and how it can
be used to protect data.

Data is one of the most highly valued resources in a competitive business
environment. Protecting that data, controlling access to it, and verifying its
authenticity while maintaining its availability are priorities in our
security-conscious world. Data encryption is a tool that answers many of these
needs. The Security Key Lifecycle Manager for z/OS simplifies encryption tasks.

The Security Key Lifecycle Manager for z/OS supports several storage devices. The
IBM System Storage TS1130 Tape Drive (3592 Model E06 and Model EU61. The
3592 EU6 Tape Drive is a 3592 E05 Tape Drive canister upgraded to contain a
Model E06 drive through the MES (Miscellaneous Equipment Specification)
process) and TS1120 Tape Drive (3592 Model E05) can encrypt data as it is written
to any size IBM TotalStorage Enterprise Tape Cartridge 3592, including WORM
cartridges. The IBM System Storage TS1140 Tape Drive (3592 Model E07) can
encrypt data on IBM TotalStorage Enterprise Tape Cartridge 3592 JB/JX and JC/JY
media only in supported write format. JA/JW cartridges can only read encrypted
or decrypted data. The IBM LTO Ultrium 4 Tape Drive (LTO Ultrium 4) and LTO
Ultrium 5 Tape Drive (LTO Ultrium 5) drives can also encrypt data as it is written
to any LTO Ultrium 4 and LTO Ultrium 5 Data Cartridges. Encryption is
performed at full line speed in the tape drive after compression. Compression is
more efficiently done before encryption. This new capability adds a strong measure
of security to stored data. It is added without the processing overhead and
performance degradation associated with encryption performed on the server or
the expense of a dedicated appliance.

The encryption solution comprises these elements:

The Encryption-Enabled Devices
All TS1130 and TS1140 Tape Drives are encryption-capable. All TS1120 Tape
Drives with Feature Code 5592 or 9592 are encryption-capable. All IBM LTO
Ultrium 4 and LTO Ultrium 5 Tape Drives are encryption-capable. Fibre-Channel
(FC) and Serial Attached SCSI (SAS) IBM LTO-4 and LTO-5 tape drives are
encryption-capable. SCSI IBM LTO-4 and LTO-5 tape drives are encryption
aware, can load and handle encrypted LTO-4 and LTO-5 cartridges, but cannot
process encryption operations. These tape drives are functionally capable of
performing hardware encryption, but this capability has not yet been activated.
In order to perform hardware encryption, the tape drives must be
encryption-enabled.

In an IBM System Storage TS3500 Tape Library, the TS1120, TS1130, and TS1140
tape drives can be encryption-enabled through the IBM System Storage Tape
Specialist.

Note: When a TS1130 Tape Drive is attached to a 3592 J70 or C06 tape
controller, the tape drive must be enabled for system-managed encryption. This
setting applies even when encryption is not being used by the host.
For all other TS1120, TS1130, and TS1140 tape drives, an IBM representative
sets up the drive for encryption. Only encryption-enabled TS1120, TS1130, and
TS1140 tape drives can read and write encrypted 3592 tape cartridges.

© Copyright IBM Corp. 2006, 2011 1

All IBM LTO Ultrium 4 and LTO Ultrium 5 Tape Drives can be
encryption-enabled through the IBM System Storage Tape Specialist. However,
encryption must be licensed on LTO Ultrium 4 and LTO Ultrium 5 Tape Drives
in tape libraries. This setting is acquired with Feature Code 1604 on the TS3500
Library or Feature Code 5900 on other libraries. Consult your library
documentation for more information.

The IBM® System Storage® DS8000® with IBM Full Disk Encryption drives are
encryption-capable. Each storage facility image on an encryption-capable
DS8000 can be configured to either enable or disable encryption for all data
that is stored on your disks. To enable encryption, the DS8000 must be
configured to communicate with two or more Security Key Lifecycle Manager
for z/OS servers. The physical connection between the DS8000 HMC and the
key server is through a TCP/IP network. To learn additional information about
the DS8000, see http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/
index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc
%2Ff2c_ekmtklm_3ekm3r.html

See “Hardware and Software Requirements” on page 17 for more information
about tape drives.

Encryption Key Management
Encryption involves the use of several kinds of keys, in successive layers. The
generation, maintenance, control, and transmission of these keys depends upon
the operating environment where the encrypting tape drive is installed. Some
applications such as Tivoli Storage Manager, can do key management. For
environments without such applications or where application-agnostic
encryption is wanted, IBM provides the Security Key Lifecycle Manager for
z/OS to perform all necessary key management tasks. “Managing Encryption”
on page 8 describes these tasks in more detail.

Encryption Policy
This policy is used to implement encryption. It includes the rules that govern
which volumes are encrypted and the mechanism for key selection. How and
where these rules are set up depends on the operating environment. See
“Managing Encryption” on page 8 for more information.

Note: In the Tape Storage environment, the Encryption function on tape drives is
configured and managed by the customer and not the IBM System Services
Representative (SSR). In some instances SSRs are required to enable encryption at a
hardware level when service access or service password controlled access is
required. Customer setup support is by Field Technical Sales Specialist (FTSS),
customer documentation, and software support for encryption software problems.
Customer “how to” support is also provided on the support line contract.

Security Key Lifecycle Manager for z/OS Components
Provides information on the various components of the software and their
function.

The Security Key Lifecycle Manager for z/OS is part of the IBM Java environment
and uses the IBM Java Security components for its cryptographic capabilities. (For
more information about the IBM Java Security components see the related
publications section.) The Security Key Lifecycle Manager for z/OS has four main
components that are used to control its behavior. These components are:

Java security keystore
The keystore is defined as part of the Java Cryptography Extension (JCE).

2 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ekmtklm_3ekm3r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ekmtklm_3ekm3r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ekmtklm_3ekm3r.html

The keystore is an element of the Java Security components, which are, in
turn, part of the Java runtime environment. A keystore holds the
certificates and keys (or pointers to the certificates and keys) used by the
Security Key Lifecycle Manager for z/OS to perform cryptographic
operations. Several types of Java keystores are supported offering different
operational characteristics to meet your needs. These characteristics are
explained in detail in “Keystore Considerations” on page 26.

Attention: It is impossible to overstate the importance of preserving your
keystore data. You will not be able to decrypt your encrypted tapes if you
do not have access to your keystore. Carefully read the relevant topics to
understand the methods available for protecting your keystore data.

Configuration files
The configuration files enable you to customize the behavior of the
Security Key Lifecycle Manager for z/OS to meet the needs of your
organization.

Device Table
The device table is used by the Security Key Lifecycle Manager for z/OS to
monitor the devices it supports. The device table is a non-editable, binary
file whose location is specified in the configuration file. You can change its
location to meet your needs.

KeyGroups.xml file
This password-protected file contains the names of all encryption key
groups and the aliases of the encryption keys associated with each key
group.

Technical overview
You can use Security Key Lifecycle Manager for z/OS to assist in securing vital
data.

Key
store

Device
Table

Holds public/private key
pairs and certificates

Tracks which tape
devices

supports
Security Key Lifecycle

Manager for z/OS

Records Keystore location and
defines Security Key Lifecycle
Manager for z/OS behavior

Generates encryption keys
and manages their transfer
to and from tape devices

a
1
4
m

0
2
3
4

Key
Groups

Config
File

Organizes
encryption
keys into
groups

IBM Security Key
Lifecycle Manager for z/OS

Figure 1. The four main components of Security Key Lifecycle Manager for z/OS

Chapter 1. Product Overview 3

The Security Key Lifecycle Manager for z/OS works with IBM encryption-enabled
tape drives and system storage devices. The product helps in generating,
protecting, storing, and maintaining encryption keys that are used to encrypt
information being written to and decrypt information being read from devices.

Encryption-enabled 3592 and LTO tape drives
Security Key Lifecycle Manager for z/OS supports encryption-enabled 3592 and
LTO tape drives. Drives without encryption enablement are not supported.

Security Key Lifecycle Manager for z/OS supports these drive types:
v 3592 tape drives

TS1120, TS1130, and TS1140 tape drives that are enabled to encrypt data.
v LTO

LTO Ultrium 4 and LTO Ultrium 5 tape drives that are enabled to encrypt data.

Encryption is performed at full line speed in the tape drive after compression.

Enterprise Storage - IBM System Storage DS8000 (2107, 242x)
Security Key Lifecycle Manager for z/OS supports the DS8000 Storage Controller.

This support requires the appropriate microcode bundle version on the DS8000
Storage Controller, Licensed Internal Code level 64.2.xxx.0 or higher.

Keys overview
An encryption key is typically a random string of bits generated specifically to
scramble and unscramble data. Encryption keys are created using algorithms
designed to ensure that each key is unique and unpredictable. The longer the key
constructed this way, the harder it is to break the encryption code.

Federal Information Processing Standard 140-2 Considerations
Describes the Federal Information Processing Standard (FIPS) 140-2 cryptographic
standard and its relation to the product.

Federal Information Processing Standard (FIPS) 140-2 has become important now
that the Federal government requires all its cryptographic providers to be FIPS 140
certified. This standard has also been adopted in a growing private sector
community. The certification of cryptographic capabilities by a third-party in
accordance with government standards is felt to have increased value in this
security-conscious world.

The Security Key Lifecycle Manager for z/OS does not provide cryptographic
capabilities itself and therefore does not require, nor is it allowed to obtain, FIPS
140-2 certification. However, the Security Key Lifecycle Manager for z/OS takes
advantage of the cryptographic capabilities of the IBM JVM in the IBM Java
Cryptographic Extension component. The product allows the selection and use of
the IBMJCEFIPS cryptographic provider, which has a FIPS 140-2 level 1
certification. Turn the fips configuration parameter to on in the Configuration
Properties file. This setting makes the Security Key Lifecycle Manager for z/OS use
the IBMJCEFIPS provider for all cryptographic functions.

Note: Hardware-based keystore types cannot be used with the FIPS parameter set
to on. Only JCEKS and JCERACFKS can be used.

4 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

You can find more information about the IBMJCEFIPS provider and its selection
and use at http://www.ibm.com/developerworks/java/jdk/security/50/
FIPShowto.html.

See the documentation from specific hardware and software cryptographic
providers for information about whether their products are FIPS 140-2 certified.

About Encryption Keys
This topic describes the encryption keys used to encrypt data.

An encryption key is typically a random string of bits generated specifically to
scramble and unscramble data. Encryption keys are created using algorithms
designed to ensure that each key is unique and unpredictable. The longer the key
constructed this way, the harder it is to break the encryption code. Both the IBM
and T10 methods of encryption use 256-bit AES algorithm keys to encrypt data.
256-bit AES is the encryption standard currently recognized by the U.S.
government, which allows three different key lengths. 256-bit keys are the longest
allowed by AES.

Two types of encryption algorithms can be used by the Security Key Lifecycle
Manager for z/OS: symmetric algorithms and asymmetric algorithms. Symmetric,
or secret key encryption, uses a single key for both encryption and decryption.
Symmetric key encryption is generally used for encrypting large amounts of data
efficiently. 256-bit AES keys are symmetric keys. Asymmetric, or public and private
encryption, uses a pair of keys. Data encrypted using one key can only be
decrypted using the other key in the public and private key pair. When an
asymmetric key pair is generated, the public key is typically used to encrypt, and
the private key is typically used to decrypt.

The Security Key Lifecycle Manager for z/OS uses both symmetric and asymmetric
keys. Symmetric encryption is used for high-speed encryption of user or host data,
and asymmetric encryption (which is necessarily slower) for protecting the
symmetric key.

Encryption keys can be generated by the Security Key Lifecycle Manager for z/OS,
by applications such as Tivoli Storage Manager, or by a utility such as keytool.
Generating AES keys and how they are transferred to the tape drive depend on the
tape drive type and the method of encryption management. It is helpful to
understand the difference between how the Security Key Lifecycle Manager for
z/OS uses encryption keys and how other applications use them.

How the Security Key Lifecycle Manager for z/OS Processes
Encryption Keys

How Security Key Lifecycle Manager for z/OS encrypts data depends on the type
of drive.
v DS8000

Encrypts data using IBM® Full Disk Encryption drives.
v TS1120, TS1130, and TS1140 Tape Drives

Converts data to ciphertext using a symmetric 256-bit AES Data Key.
v LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive

Converts data to ciphertext using a pre-generated symmetric Data Key.

On DS8000

Chapter 1. Product Overview 5

http://www.ibm.com/developerworks/java/jdk/security/50/FIPShowto.html
http://www.ibm.com/developerworks/java/jdk/security/50/FIPShowto.html

Security Key Lifecycle Manager for z/OS supports data encryption with the IBM®

Full Disk Encryption drives for DS8000. To use data encryption, a DS8000 must be
ordered from the factory with all IBM Full Disk Encryption drives.

For more information about DS8000 encryption, see http://
publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=
%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ds8000encryption_3ekm6r.html

On TS1120, TS1130, and TS1140 Tape Drives

In system-managed and library-managed tape encryption, unencrypted data (clear
text) is sent to the tape drive. The text is then converted to ciphertext using a
symmetric 256-bit AES Data Key (DK) generated by the Security Key Lifecycle
Manager for z/OS. The ciphertext is then written to tape. The Security Key
Lifecycle Manager for z/OS uses a single, unique Data Key for each Enterprise
Tape Cartridge. This Data Key is also encrypted, or wrapped, by the Security Key
Lifecycle Manager for z/OS using the public key from an asymmetric Key
Encrypting Key (KEK) pair. This process creates an Externally Encrypted Data Key
(EEDK). The EEDK is written to the cartridge memory and to three additional
places on the tape media in the cartridge. The tape cartridge now holds both the
encrypted data and the means to decrypt it for anyone holding the private part of
the KEK pair. Figure 2 illustrates this process.

The DK is also wrapped a second time, possibly using the public key of another
party, to create an additional EEDK. Both EEDKs can be stored on the tape
cartridge. In this way, the tape cartridge can be shipped to a business partner
holding the corresponding private key. The private key would allow the DK to be
unwrapped and the tape decrypted by the business partner.

On the LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive

In system-managed and library-managed tape encryption, unencrypted data is sent
to an LTO Ultrium 4 or LTO Ultrium 5 Tape Drive. The data is then converted to
ciphertext using a pre-generated symmetric Data Key (DK) from a keystore
available to the Security Key Lifecycle Manager for z/OS. The data is then written
to tape. The Security Key Lifecycle Manager for z/OS selects a pre-generated Data
Key in round robin fashion. Data Keys are reused on multiple tape cartridges
when an insufficient number of Data Keys have been pre-generated. The Data Key
is sent to the LTO Ultrium 4 or LTO Ultrium 5 Tape Drive in encrypted, or
wrapped, form by the Security Key Lifecycle Manager for z/OS. The LTO Ultrium

Clear
Data

E {data,DK}sym

Encrypted
Tape

DK

KEK

Cipher
Text

EEDKE {DK,KEK}asy

a
1
4
m

0
1
7
6

Figure 2. Encryption Using both Symmetric and Asymmetric Encryption Keys. System-Managed and Library-Managed
Encryption on TS1120TS1130, and TS1140 tape drives

6 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ds8000encryption_3ekm6r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ds8000encryption_3ekm6r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_ds8000encryption_3ekm6r.html

4 or LTO Ultrium 5 Tape Drive unwraps this Data Key and uses it to perform
encryption or decryption. However, no wrapped key is stored anywhere on the
LTO Ultrium 4 or LTO Ultrium 5 tape cartridge. This method is a major difference
between the way TS1120, TS1130, or TS1140 and LTO devices operate with the
Security Key Lifecycle Manager for z/OS. Once the encrypted volume is written,
the Data Key must be accessible based on the alias or key label. The Data key must
be available to the Security Key Lifecycle Manager for z/OS in order for the
volume to be read. Figure 3 illustrates this process.

The Security Key Lifecycle Manager for z/OS also gives you the ability to organize
your symmetric keys for LTO encryption into key groups. This feature allows you
to group keys according to the type of data they encrypt, or by any other
specification. See “Creating and managing key groups” on page 76 for more
information.

Encryption Key Processing by Other Applications (Security Key
Lifecycle Manager for z/OS not Used)

In application-managed tape encryption in which Security Key Lifecycle Manager
for z/OS is not used, unencrypted data (clear text) is sent to the tape drive. The
text is then converted to ciphertext using a symmetric Data Key (DK) provided by
the application, and is then written to tape. The Data Key is not stored anywhere
on the tape cartridge. When the encrypted volume is written, the Data Key must
be in a location available to the application for the volume to be read.

TS1120, TS1130, TS1140, LTO Ultrium 4, and LTO Ultrium 5 tape drives can use
applications such as Tivoli Storage Manager for application-managed encryption.
Tivoli Storage Manager uses a single, unique Data Key for each tape cartridge.

Alternatively, the tape drives can be used by applications that use the T10
command set to perform encryption. The T10 command set uses symmetric 256-bit
AES keys provided by the application. T10 can use multiple, unique Data Keys per
tape cartridge, and even write encrypted data and clear data to the same tape
cartridge. When the application encrypts a tape cartridge, it selects or generates a
Data Key. The Data key is generated using a method determined by the application
and sends it to the tape drive. The key is not wrapped with an asymmetric public
key and it is not stored on the tape cartridge. When the encrypted data is written
to tape, the Data Key must be in a location available to the application. This setting
enables data to be read.

The process for application-managed tape encryption (and system-managed and
library-managed encryption on LTO) is shown in Figure 3.

Clear
Data

E {data,DK}sym

Encrypted
Tape

DK

Cipher
Text

a
1
4
m

0
2
3
6

Figure 3. Encryption Using only Symmetric Encryption Keys. Application-Managed Encryption on TS1120, TS1130, and
TS1140 tape drives, and System-Managed, Library-Managed, and Application-Managed Encryption on LTO Ultrium 4
and LTO Ultrium 5 Tape Drive.

Chapter 1. Product Overview 7

In Summary

The number of encryption keys that can be used for each volume depends on the:
v Tape drive
v Encryption standard
v Method used to manage the encryption

For transparent encryption of LTO Ultrium 4 and LTO Ultrium 5 (that is, using
system-managed or library-managed encryption with the Security Key Lifecycle
Manager for z/OS,) the uniqueness of Data Keys depends on the availability of a
sufficient number of pre-generated keys to the Security Key Lifecycle Manager for
z/OS.

Table 1. Encryption Key Summary

Encryption Management
Method

Keys used by

TS1120 TS1130,
and TS1140 (IBM

Encryption)

LTO Ultrium 4
and LTO Ultrium

5 (IBM
Encryption)

TS1120, TS1130,
TS1140/LTO

Ultrium 4 and
LTO Ultrium 5

(T10 Encryption)

System-Managed Encryption /
Library-Managed Encryption
(Security Key Lifecycle Manager
for z/OS)

1 unique DK /
cartridge

1 DK / cartridge N/A

Application-Managed
Encryption (no Security Key
Lifecycle Manager for z/OS)

1 unique DK /
cartridge

1 DK / cartridge Multiple DKs /
cartridge

DK = Symmetric AES 256-bit Data Key

Managing Encryption
The Security Key Lifecycle Manager for z/OS is a Java software program. This
product assists IBM encryption-enabled devices. The product assists in generating,
protecting, storing, and maintaining encryption keys. Those keys are used to
encrypt information being written to, and decrypt information being read from,
tape media (tape and cartridge formats) and system storage devices. This product
is designed to run in the background as a shared resource deployed in several
locations within an enterprise. The product can serve numerous IBM encrypting
tape drives and system storage devices regardless of where those devices are.
These devices can be in tape library subsystems, connected to mainframe systems
through various types of channel connections, or installed in other computing
systems. A command-line interface client provides a robust set of commands to
customize the Security Key Lifecycle Manager for z/OS for your environment and
monitor its operation. The product uses one or more keystores to hold the
certificates and keys (or pointers to the certificates and keys). These keystores are
required for all encryption tasks. The Security Key Lifecycle Manager for z/OS
supports the following IBM keystores:
v JCEKS
v JCECCAKS
v JCECCARACFKS
v JCERACFKS

See “Keystore Considerations” on page 26 for detailed information.

8 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Attention: The product performs the function of requesting the generation of
encryption keys and passing those keys to TS1120, TS1130, TS1140 or LTO Ultrium
4,LTO Ultrium 5 tape drives and DS8000. The key material, in wrapped
(encrypted) form resides in system memory during processing by the Security Key
Lifecycle Manager for z/OS. The key material must be transferred without error to
the appropriate tape drive so that data written on a cartridge can be recovered
(decrypted). If a corrupted key material is used to write data to a cartridge, then
data written to that cartridge will not be recovered. There are safeguards in place
to make sure that such data errors do not occur. If the machine hosting the
Security Key Lifecycle Manager for z/OS is not using Error Correction Code (ECC)
memory it is possible that the key material can become corrupted while in system
memory. The corruption can then cause data loss. Although the risk is slight, it is
best to host the Security Key Lifecycle Manager for z/OS using ECC memory.

The Security Key Lifecycle Manager for z/OS acts as a background process. The
product waits for key generation or key retrieval requests. The requests are sent to
it through a TCP/IP communication path between itself and the tape library, tape
controller, tape subsystem, device driver, or tape drive. When a tape drive writes
encrypted data, it first requests an encryption key from the Security Key Lifecycle
Manager for z/OS. Upon receipt of the request, the Security Key Lifecycle
Manager for z/OS performs the following tasks.

For TS1120, TS1130, and TS1140 tape drives: The Security Key Lifecycle Manager
for z/OS generates an Advanced Encryption Standard (AES) key and serves it to
the tape drives in two protected forms:
v Encrypted or wrapped, using Rivest-Shamir-Adleman (RSA) key pairs. TS1120,

TS1130, and TS1140 tape drives write this copy of the key to the cartridge
memory. The key is also copied in three additional places on the tape media in
the cartridge for redundancy.

v Separately wrapped for secure transfer to the tape drive. The keys are
unwrapped upon arrival, and the key inside is used to encrypt the data written
to tape.

When an encrypted tape cartridge is read by a supported tape drive, the protected
AES key on the tape is sent to the Security Key Lifecycle Manager for z/OS. The
wrapped AES key is unwrapped in the Security Key Lifecycle Manager for z/OS.
The AES key is then wrapped with a different key for secure transfer back to the
tape drive. The AES key is unwrapped in the tape drive and used to decrypt the
data stored on the tape. The Security Key Lifecycle Manager for z/OS also allows
protected AES keys to be rewrapped, or rekeyed. Different RSA keys can be used
from the originals when the tape was written. Rekeying is useful when an
unexpected need arises to export volumes to business partners whose public keys
were not included. This method eliminates rewriting the entire tape. This method
also enables the data key of a tape cartridge to be reencrypted with the public key
of the business partner.

For LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive: The Security Key
Lifecycle Manager for z/OS fetches an existing AES key from a keystore. The
product then wraps the AES key for secure transfer to the tape drive where it is
unwrapped upon arrival. The key is used to encrypt the data being written to tape.

When an encrypted tape is read by an LTO Ultrium 4 or LTO Ultrium 5 Tape
Drive, the Security Key Lifecycle Manager for z/OS fetches the required key from
the keystore. The key is fetched based on the information in the Key ID on the
tape and serves it to the tape drive wrapped for secure transfer.

Chapter 1. Product Overview 9

For DS8000: When the DS8000 starts, the device requests an unlock key from
Security Key Lifecycle Manager for z/OS.

If the DS8000 requests a new key for its unlock key, Security Key Lifecycle
Manager for z/OS generates an Advanced Encryption Standard (AES) key and
serves the key to the drive in two protected forms:
v Encrypted (wrapped) using Rivest-Shamir-Adleman (RSA) key pairs. The

DS8000 stores this copy of the key on the array in an unencrypted partition.
v Separately wrapped for secure transfer to the drive where it is unwrapped upon

arrival and the key inside is used to unlock the array.

If the DS8000 requests an existing unlock key, the protected AES key on the array
is sent to Security Key Lifecycle Manager for z/OS where the wrapped AES key is
unwrapped. The AES key is then wrapped with a different key for secure transfer
back to the DS8000, where it is unwrapped and used to unlock the array.

For TS1120, TS1130,TS1140, LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape
Drive: There are three methods of encryption management to choose from. These
methods have the following differences:
v Where the encryption policy engine resides
v Where key management is performed for your solution
v How the Security Key Lifecycle Manager for z/OS is connected to the drive

Your operating environment determines which is the best for you. Key
management and the encryption policy engine can be located in any one of the
following three environmental layers.

Application Layer
An application program, separate from the software, initiates data transfer for
tape storage, for example Tivoli Storage Manager.

Library

Library Drive Interface

System

Application

Policy

Policy

Policy

or

or

D
a
ta

P
a
th

D
a
ta

P
a
th

a
1
4
m

0
1
7
7

Figure 4. Three possible locations for encryption policy engine and key management.

10 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

System Layer
Everything between the application and the tape drives, for example the
operating system, z/OS DFSMS, device drivers, and FICON/ESCON
controllers.

Library Layer
The enclosure for tape storage, such as the IBM System Storage TS3500 Tape
Library. A modern tape library contains an internal interface to each tape drive
within it.

Application-Managed Tape Encryption
This topic describes application-managed tape encryption.

This method is best where operating environments run an application already
capable of generating and managing encryption policies and keys, such as Tivoli
Storage Manager. Policies specifying when encryption is to be used are defined
through the application interface. The policies and keys pass through the data path
between the application layer and the encrypting tape drives. Encryption is the
result of interaction between the application and the encryption-enabled tape drive,
and does not require any changes to the system and library layers. The application
manages the encryption keys. Because of this setup, data volumes written and
encrypted using the application-managed encryption method can only be read by
the same software application that wrote them.

The Security Key Lifecycle Manager for z/OS is not required by, or used by,
application-managed tape encryption.

Application-managed tape encryption on IBM TS1120, TS1130,TS1140, LTO Ultrium
4, and LTO Ultrium 5 tape drives can use either of two encryption command sets:
v The IBM encryption command set developed for the Security Key Lifecycle

Manager for z/OS
v The T10 command set defined by the InterNational Committee for Information

Technology Standards (INCITS)

Application-managed tape encryption using the TS1120, and TS1130 tape drives are
supported in the following IBM libraries:
v IBM System Storage TS3400 Tape Library
v IBM System Storage TS3500 Tape Library
v IBM TotalStorage 3494 Tape Library

Application-managed tape encryption using the TS1140 tape drive is supported in
the IBM System Storage TS3500 Tape Library.

Application-managed tape encryption using LTO Ultrium 4 and LTO Ultrium 5
tape drives are supported in the following IBM tape drives and libraries:
v IBM System Storage TS2340 Tape Drive Express® Model S43 and via Xcc/HVEC

3580S4X
v IBM System Storage TS3100 Tape Library
v IBM System Storage TS3200 Tape Library
v IBM System Storage TS3310 Tape Library
v IBM System Storage TS3500 Tape Library

Chapter 1. Product Overview 11

For details about setting up Application-Managed tape encryption, see your Tivoli
Storage Manager documentation or visit http://publib.boulder.ibm.com/
infocenter/tivihelp/v1r1/index.jsp for more information.

System-Managed Tape Encryption
This topic describes system-managed tape encryption.

Use this method for encryption on TS1120, TS1130, TS1140, LTO Ultrium 4, and
LTO Ultrium 5 tape drives. Use this method if the applications that write or read
from tape are not capable of performing the key management required for
application-managed encryption.

System z®

Encryption policies specifying when to use encryption are set up in z/OS DFSMS
(Data Facility Storage Management Subsystem). They can also be done implicitly
through each instance of IBM device driver. Additional software products such as
IBM Integrated Cryptographic Service Facility (ICSF) and IBM Resource Access
Control Facility (RACF®) can also be used. Key generation and management are
performed by the Security Key Lifecycle Manager for z/OS, a Java application
running on the host or externally on another host. Policy controls and keys pass
through the data path between the system layer and the encrypting tape drives.
Encryption is transparent to the applications.

Encryption key labels are assigned on a per-storage pool basis. The labels are
assigned using the TS7700 Maintenance Interface on the following tape drives
connected to an IBM Virtualization Engine TS7700:
v TS1120
v TS1130
v TS1140

DFSMS storage constructs are used by z/OS to control the use of storage pools for
logical volumes, resulting in an indirect form of encryption policy management.
For more information, see the white paper, IBM Virtualization Engine TS7700 Series
Encryption Overview, available at http://www.ibm.com/support/docview.wss?
&uid=ssg1S4000504.

With system-managed encryption, System z hosts can rekey an encrypted tape on
the TS1120, TS1130, and TS1140 tape drives. See the appropriate operating system
documentation for the mechanism that initiates a rekey operation. For example,
with z/OS, the existing IEHINITT utility is enhanced to support rekeying. Use
rekeying to export volumes to multiple business partners. This method eliminates
rewriting the entire tape and enables the data key of a tape cartridge to be
reencrypted with the public key of the business partner.

See z/OS DFSMS Software Support for IBM System Storage TS1130 and TS1120 Tape
Drives (3592) for more details on setting up system-managed encryption.

Encryption Key Paths
In system-managed encryption on System z platforms, multiple key paths are
supported by the tape controller.

12 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp
http://www.ibm.com/support/docview.wss?&uid=ssg1S4000504
http://www.ibm.com/support/docview.wss?&uid=ssg1S4000504

In-Band Key Flow

In-band key flow occurs between the Security Key Lifecycle Manager for z/OS and
the tape drive, shown in Figure 5. The key flow occurs through a FICON proxy on
the FICON/ESCON interface. The FICON proxy supports failover to the secondary
key path if first-specified Security Key Lifecycle Manager for z/OS path addresses
fail. Impact on controller service requirements is minimal.

The controller
v Reports drive status in SMIT displays
v Passes encryption-related errors from the drive to the host
v Reports to the host “encryption failure unit checks”
v Must be reconfigured whenever new encryption drives are introduced for

attachment or when an encryption-capable drive is enabled for encryption.

Out-of-Band Key Flow

Out-of-band key flow, shown in Figure 6 on page 14, occurs between the Security
Key Lifecycle Manager for z/OS and the tape drive. The key flow occurs through a
subsystem proxy, located in the 3592 Controller or TS7700 Virtualization Engine, on
the Security Key Lifecycle Manager for z/OS interface. Impact on service
requirements can be greater than for in-band key flow. The impact is greater due to
the introduction of two routers on the Security Key Lifecycle Manager for z/OS
interface, to and from the controller.

The controller and TS7700
v Supports failover to the secondary key path on failure of first-specified Security

Key Lifecycle Manager for z/OS path addresses
v Reports drive status in SMIT displays
v Passes encryption-related errors from the drive to the host
v Reports to the host “encryption failure unit checks”
v Must be reconfigured whenever new encryption drives are introduced for

attachment or when an encryption-capable drive is enabled for encryption.

Encryption
Control

Z server

Host

Subsystem
Proxy

3592
C06/J70

3494
3953
LM

3592
E05s-EE

Library Manager
Interface

Drive
Interface

FICON
ESCON
Interface

FICON
Proxy

Key
Exchange
Interface

c
0

6
0

0
0

7
8

IBM Security
Key Lifecycle
Manager
for z/OS

Figure 5. In-band encryption key flow

Chapter 1. Product Overview 13

As many as two Security Key Lifecycle Manager for z/OS IP/domain addresses
(and as many as two ports) can be entered for each controller. Two Domain name
server IP addresses can also be entered.

Library-Managed Tape Encryption
This topic describes library-managed tape encryption.

This method is best for TS1120, TS1130, TS1140,LTO Ultrium 4 Tape Drive, and
LTO Ultrium 5 Tape Drive in the either of the following environments:
v an open-attached IBM System Storage TS3100, TS3200, TS3310, TS3400 or TS3500

tape library, or
v IBM TotalStorage 3494 Tape Library

For TS3500, barcode encryption policies can be used. The policies are used to
specify when to use encryption and are set up through the IBM System Storage
Tape Library Specialist Web interface. In such cases, policies are based on cartridge
volume serial numbers. Library-managed encryption also enables other options,
such as encryption of all volumes in a library, independent of bar codes. Key
generation and management are performed by the Security Key Lifecycle Manager
for z/OS, a Java application running on a library network-attached host. Policy
control and keys pass through the library-to-drive interface, therefore encryption is
transparent to the applications.

Library-managed encryption, when used with certain applications such as
Symantec Netbackup™ or the EMC Legato NetWorker, includes support for an
internal label option. When the internal label option is configured, either of the
following tape drives automatically derive the encryption policy:
v TS1120
v TS1130
v TS1140
v LTO Ultrium 4 Tape Drive
v LTO Ultrium 5 Tape Drive

c
0
6
0
0
0
7
7

IBM Security
Key Lifecycle
Manager for
z/OS Interface

Encryption
Control

Z server

Host

FICON
Proxy

Subsystem
Proxy

3592 C06/J70
Controller

3494
3953
LM

3592
E05s-EE

Library Manager
Interface

Drive
Interface

IBM
Security

Key

Lifecycle
M

anager

for z/O
S

Interface

FICON
ESCON
Interface

TS7700
Virtualization

Engine

Drive
Interface

3592
E05s-EE

(back end)

Subsystem
Proxy

IBM Security Key Lifecycle Manager
for z/OS Interface

Figure 6. Out-of-band encryption key flow

14 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

The tape drives also derive the key information from the metadata written on the
tape volume by the application. See your Tape Library Operator's Guide for more
information.

System-managed tape encryption and library-managed tape encryption
interoperate with one another. A tape encrypted using system-managed encryption
can be decrypted using library-managed encryption, and vice versa, provided they
both have access to the same keys and certificates.

Audit Records
Security Key Lifecycle Manager for z/OS provides audit records in the audit log.
The Security Key Lifecycle Manager for z/OS provides System Management
Facilities support for audit records.

System Management Facilities is a z/OS service aid for collecting information from
various z/OS subsystems. The default configuration on z/OS routes all audit
records to System Management Facilities type 83 sub-type 6 records. For more
information on request and response formats, see http://www-01.ibm.com/
support/docview.wss?uid=pub1sa22763009.

Chapter 1. Product Overview 15

http://www-01.ibm.com/support/docview.wss?uid=pub1sa22763009
http://www-01.ibm.com/support/docview.wss?uid=pub1sa22763009

16 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 2. Planning your Security Key Lifecycle Manager for
z/OS Environment

The Planning topic explains how best to use and configure the product.

This section is intended to provide information to allow you to determine the best
Security Key Lifecycle Manager for z/OS configuration for your needs. Many
factors must be considered when you are planning how to set up your encryption
strategy. Review these topics with care.

Hardware and Software Requirements
Security Key Lifecycle Manager for z/OS has specific hardware and software
requirements for its installation and use.

Java requirements
You need to install a Java SDK. Understand the requirements needed to use the
product correctly.

The minimum Java levels required to run the Security Key Lifecycle Manager for
z/OS on the z/OS platform are
v Java SDK 5.0 Service Refresh (SR) 5
v Java SDK 6.0 GA+

Note: Only the IBM version of the Java Runtime Environment (JRE) for each of the
following platforms supports the Security Key Lifecycle Manager for z/OS.

Table 2. Security Key Lifecycle Manager for z/OS Minimum Software Requirements for z/OS

IBM Software Developer Kit Model/PID Number

IBM 31 - bit and 64 - bit SDK for z/OS,
Java 2 Technology, V5.0 (z/OS 1.10, 1.11
and 1.12)

5655-N98 (at the SDK 5.0 SR5 level or above)

IBM 31 - bit and 64 - bit SDK for z/OS,
Java 2 Technology, V6.0 (z/OS 1.10, 1.11
and 1.12)

5655-R31 for 31 - bit and 5655-R32 for 64 - bit

Available at : http://www.ibm.com/servers/eserver/zseries/software/java

Note: In Java 6.0 for 64-bit SDK, the ICSF level must be HCR7770 when you use
the JCECCAKS keystore type. If the ICSF version is not updated to HCR7770, and
the flag requiredHardwareProtectionForSymmetricKeys is set to true, an error
occurs during read and write actions for TS1120, TS1130, and TS1140 tape drives
and DS8000.

z/OS Solution Components
Operating Systems

Security Key Lifecycle Manager for z/OS supports z/OS 1.10 ,1.11 and 1.12
versions.

© Copyright IBM Corp. 2006, 2011 17

http://www.ibm.com/servers/eserver/zseries/software/java

Running Security Key Lifecycle Manager for z/OS

The Security Key Lifecycle Manager for z/OS is a product installed by SMP/E.

Note: Regardless of which IBM SDK version you use, you must replace the
US_export_policy.jar and local_policy.jar files from the $JAVA_HOME/lib/security
directory. You must replace the files with an unrestricted version of these files.
These unrestricted policy files are required by the Security Key Lifecycle Manager
for z/OS in order to serve AES keys. The preferred method to replace the files on
z/OS is to copy the files that are shipped in the z/OS Java SDK build. The files are
under the jce demo directory. Copy the files to the lib/security directory:
cp /usr/lpp/java/J5.0/demo/jce/policy-files/unrestricted/*
/usr/lpp/java/J5.0/lib/security

Alternatively, the unrestricted policy files can be downloaded from the following
website: https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk. Select the unrestricted JCE policy files for the SDK you
are currently using. See https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk for the correct unrestricted policy files.

Control Units

Table 3. Control Unit Requirements for z/OS

Control Unit Model/PID Number Type of Update

3592 J70 3592-J70 Firmware update shipped with 3592-J70
FC 5595 and FC 9595

TS1120 C06 3592-C06 Firmware update shipped 3592-C06 FC
5595 and FC 9595

Router for Security Key Lifecycle Manager for
z/OS Attach (only required on tape controllers
for out-of-band support)

FC 5593 or FC 9593

3494 Lxx 3494 Lxx Firmware shipped with 3592-J70 or C06
FC 5595 and FC 9595

3953 L05 3953-L05 Firmware shipped with 3592-J70 or C06
FC 5595 and FC 9595

Virtualization Engine TS7700

TS7700 Feature Code 9900 is required for encryption. TS7700 Feature Code 0521
provides the latest firmware updates.

Table 4. Virtualization Engine TS7700 Connected Library Requirements for z/OS

Tape Library
Model/PID
Number Type of Update

TS3500 3584-L22, L23,
D22, D23

For firmware update, visit
http://www.ibm.com/servers/storage/
support/lto/3584/downloading.html

3494 3494-D22 Firmware update shipped with FC 5596
and FC 9596

18 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
http://www.ibm.com/servers/storage/support/lto/3584/downloading.html
http://www.ibm.com/servers/storage/support/lto/3584/downloading.html

Tape Libraries

Table 5. Tape Library Requirements for z/OS

Tape Library
Model/PID
Number Type of Update

TS3500 3584-L22, L23,
D22, D23

For firmware update, visit
http://www.ibm.com/servers/storage/
support/lto/3584/downloading.html

3494 3494-L22, D22,
D24

Firmware update shipped with FC 5595
and FC 9595

Tape Drive

Table 6. Tape Drive Requirements for z/OS

Tape
Drive Model/PID Number Type of Update

TS1120 3592-E05 New drive order Order 3592-E05 FC9592 and 3592-J70 or
C06 FC9595 or FC55953592-E05 Field upgrade for encryption

TS1130 3592-E06 All E06 and EU6 drives are encryption
capable. Order FC9596 for the E06 or
EU6 to configure for
encryption-enablement.

3592-EU6

TS1140 3592-E07 All E06 and EU6 drives are encryption
capable. Order FC9596 for the E06 or
EU6 to configure for
encryption-enablement.

z/VM Solution Components
Operating Systems

z/VM 5.2 and later, plus DFSMS/VM FL221 if running z/VSE® guests.

PTFs for the following APARs are required:

z/VM 5.2.0 - VM64063
z/VM 5.2.0 and later - VM64459
DFSMS/VM FL221 - VM64062 & VM64458

Note: The Security Key Lifecycle Manager for z/OS does not run on z/VM®.
However, the product is supported through an out-of-band connection to a
Security Key Lifecycle Manager for z/OS server running on z/OS. See “Planning
for System-Managed Tape Encryption” on page 21. See “z/OS Solution
Components” on page 17 for z/OS prerequisites.

See the latest editions of the following publications for more information:
v z/VM CP Planning and Administration (SC24-6083) - Chapter 23 describes the

overall usage of encryption support on z/VM.
v z/VM CP Commands and Utilities (SC24-6081) - Contains specifics about each

command.

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 19

http://www.ibm.com/servers/storage/support/lto/3584/downloading.html
http://www.ibm.com/servers/storage/support/lto/3584/downloading.html

Encryption Setup Tasks at a Glance
Before you can use the encryption capability of the tape drive, you must be sure
that certain software and hardware requirements are met. The following checklists
are intended to help you meet these requirements.

Note: Contact your IBM Representative for additional information about
encryption on either of the following tape drives: IBM TS1120, TS1130,TS1140, LTO
Ultrium 4, or LTO Ultrium 5 Tape Drive.

Security Key Lifecycle for z/OS Manager Setup Tasks
Familiarize yourself with the required configuration tasks to enable the product to
communicate with the supported drives.

Before you can encrypt tapes, the Security Key Lifecycle Manager for z/OS must
first be configured and running so that it can communicate with the encrypting
tape drives. The Security Key Lifecycle Manager for z/OS is not required to run
while tape drives are being installed. However, the product must be running in
order to perform encryption.

The following information lists the tasks you must perform before using the
Security Key Lifecycle Manager for z/OS.
v Decide what system platform to use as Security Key Lifecycle Manager for z/OS

server.
v Upgrade server operating system if necessary. (“Hardware and Software

Requirements” on page 17.)
v Upgrade the Java Virtual Machine if necessary. (“Hardware and Software

Requirements” on page 17.)
v Install Java Unrestricted Policy Files. (“Hardware and Software Requirements”

on page 17.)
v Install the Security Key Lifecycle Manager for z/OS as instructed in the Program

Directory document. See, Program Directory for IBM Security Key Lifecycle
Manager for z/OS.

v Decide on keystore type. (“Which Keystore is Right for You” on page 36.)
v Create keys, certificates, and key groups.

“Example 1: Using the Java Keytool and JCEKS on z/OS” on page 48
“Example 2: Using the JCECCAKS Keystore with the Java Hwkeytool on
z/OS” on page 50 (z/OS only)
“Example 3: Using the JCERACFKS or JCECCARACFKS Keystore on z/OS”
on page 53 (z/OS only)
“Generating Keys and Aliases for Encryption on LTO Ultrium 4 and LTO
Ultrium 5” on page 72
“Creating and managing key groups” on page 76

v If necessary, import keys and certificates.
v Define the configuration properties file. (Chapter 4, “Configuring the Security

Key Lifecycle Manager for z/OS,” on page 79.)
v Define tape drives to the Security Key Lifecycle Manager for z/OS or set

drive.acceptUnknownDrives configuration property value on. Similarly for
DS8000 devices, set ds8k.acceptUnknownDrives to on or define these devices.
(See “adddrive” on page 92 to define drives explicitly, or see “Automatically
update device table” on page 79.)

20 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

v Start the Security Key Lifecycle Manager for z/OS server. (To start the Security
Key Lifecycle Manager for z/OS see, “Quick Test Running Security Key
Lifecycle Manager for z/OS Under USS” on page 66.)

Planning for Application-Managed Tape Encryption
This topic provides the setup tasks required for application-manage tape
encryption.

To perform encryption, the TS1120, TS1130, TS1140, LTO Ultrium 4 Tape Drive, or
LTO Ultrium 5 Tape Drive must be encryption-capable.

Application-Managed Tape Encryption Setup Tasks

Any task not identified below as an IBM service task is the responsibility of the
customer.
1. Install and cable either of the following tape drives: TS1120, TS1130, TS1140

(IBM service task), LTO Ultrium 4 or LTO Ultrium 5.
a. Update library firmware (3494, TS3500 where applicable)
b. Update tape drive firmware (all tape drives in same library or environment)

2. Enable encryption for either of the following drives: TS1120, TS1130, TS1140,
LTO Ultrium 4, or LTO Ultrium 5. See IBM System Storage TS3500 Operator's
Guide for configuring TS1120, TS1130, TS1140, LTO Ultrium 4 and LTO Ultrium
5 on TS3500. Configuring the TS1120, TS1130, or TS1140 tape drives on all
others is an IBM service task.

3. Install appropriate IBM tape device driver level (Atape, for example) where
required by application.

4. Set up encryption policies. See IBM Tivoli Storage Manager for z/OS
Administrator's Guide.

5. Perform write/read operation to test encryption.
6. Verify encryption of the test volume by Autonomic Management Engine

(AME): issue
QUERY VOLUME FORMAT=DETAILED

Verify that Drive Encryption Key Manager is set to Tivoli Storage Manager.

Planning for System-Managed Tape Encryption
This topic presents the required setup tasks for system-managed tape encryption.

The requirements to perform system-managed encryption are:
v Encryption-capable TS1120, TS1130, TS1140, LTO Ultrium 4, or LTO Ultrium 5

tape drive.
v Keys and corresponding certificates.
v Security Key Lifecycle Manager for z/OS component for the Java platform.
v Routers and cables for out-of-band Security Key Lifecycle Manager for

z/OS-to-TS1120, TS1130, or TS1140 tape drive path (System z platforms only).

Setup Tasks for System-Managed Tape Encryption on IBM
System z Platforms

Any task not identified below as an IBM service task is the responsibility of the
customer.

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 21

|

1. Install and cable either of the following tape drives: TS1120, TS1130, or TS1140
tape drive (IBM service task).
a. Update tape drive firmware (3592 Models E05, J1A in same environment)
b. Update 3494, TS3500, and 3953 tape system library firmware (System z

platforms or 3953 in heterogeneous environment)
c. Update 3592 Models C06, J70 Tape Controller firmware (System z

platforms or tape controllers in heterogeneous environment) (optional)
d. Update TS7700 Virtualization Engine microcode.

2. Encryption-enable either of the following tape drives: TS1120, TS1130, or
TS1140 tape drive. Refer to IBM System Storage TS3500 Operator's Guide for
configuring either of the following tape drives on TS3500: TS1120, TS1130, or
TS1140. The 3494 Web Specialist can now be used to enable encryption on
either of the following drives in a 3494 Tape Library: TS1120, TS1130, or
TS1140. See IBM TotalStorage Automated Tape Library (3494) Operator's Guide.
For TS7700-attached drives, specify the system-managed encryption method.
The configuration of other tapes is an IBM service task.

3. Install tape controller code update, Feature Code 5595 (IBM service task).
4. Install, cable, and configure routers to the Security Key Lifecycle Manager for

z/OS, Feature Code 5593 (for out-of-band path to the Security Key Lifecycle
Manager for z/OSonly). This is an IBM service task.
v Define Primary/Secondary Security Key Lifecycle Manager for z/OS IP

ports for the tape controller.
5. Update z/OS and DFSMS host software with appropriate PTFs.
6. Install Feature Code 9900 License Key on TS7700.
7. Set up encryption policies.

v Update DFSMS Data Class to specify encryption (recording format EE2) and
other optional parameters (such as media type or performance scaling) as
appropriate.

v Specify the key labels through the DD statement, data class, or Security Key
Lifecycle Manager for z/OS defaults.

v Update other DFSMS polices (as appropriate) to steer allocation to correct
library.

v Encryption on the TS7700 VE is controlled on a storage pool basis. Use the
Maintenance Interface (MI) web interface for the TS7700 VE Pool
Encryption Settings panel to specify the key labels and modes to use for
each storage pool.

See IBM z/OS DFSMS Software Support for IBM System Storage TS1130 and
TS1120 Tape Drives (3592).

8. For in-band key management use the IECIOSxx PARMLIB member or
SETIOS command to define Primary/Secondary Security Key Lifecycle
Manager for z/OS. Also define the IOSAS OMVS segment to RACF.

9. Make the appropriate HCD changes.
10. Determine if coexistence support is needed.
11. Contact your tape management system or application vendor for any required

code changes and any installation exit changes that are needed.
12. Set up the system-managed encryption method. For 3494 or stand-alone

drives, have your IBM service representative update the drives. For TS3500,
update using the IBM System Storage Tape Library Specialist.

13. Schedule an IPL.
14. Verify encryption:

22 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

For in-band path to the Security Key Lifecycle Manager for z/OS:
a. Use the DISPLAY IOS,ISKLM command (with the VERIFY option) to verify

the in-band path to the Security Key Lifecycle Manager for z/OS.
b. Verify that a job (or application) requesting encryption (through data class)

has its data encrypted.
For out-of-band path to the Security Key Lifecycle Manager for z/OS:
a. Use RAS functions to verify (IBM service task) Security Key Lifecycle

Manager for z/OS paths and encryption configuration.

Planning for Library-Managed Tape Encryption
This topic provides the required setup tasks for library-managed encryption.

The requirements to perform system-managed encryption are:
v Encryption-capable TS1120, TS1130, TS1140, LTO Ultrium 4, or LTO Ultrium 5

tape drive
v Keystore
v Security Key Lifecycle Manager for z/OS component for the Java platform

Library-Managed Tape Encryption Tasks

Any task not identified below as an IBM service task is the responsibility of the
customer.
1. Install and cable either of the following tape drives: TS1120, TS1130, TS1140

(IBM service task), LTO Ultrium 4, or LTO Ultrium 5 tape drive.
a. Update tape system library firmware (3494 or TS3500)
b. Update tape drive firmware (all tape drives in same library)
c. For TS1120, TS1130, or TS1140 tape drives in 3494 or TS3500, order Feature

Code 9900 for Encryption Configuration. This is an IBM service task.
d. For LTO Ultrium 4 tape drives, install Feature Code 1604 for Transparent

LTO Encryption. This is an IBM service task.
2. Perform the following steps:

v Use IBM System Storage Tape Library Specialist to enable TS1120, TS1130,
TS1140, LTO Ultrium 4, or LTO Ultrium 5 tape drives.

v Use IBM System Storage Tape Library Specialist to enable 3494 or TS3500
Tape Library for library-managed tape encryption. See the appropriate tape
library operator guide.

a. Add Security Key Lifecycle Manager for z/OS IP addresses.
b. Specify key label.
c. Set up scratch encryption policy.

3. Set up key mapping for ILEP (optional).
4. Use library diagnostic functions to verify Security Key Lifecycle Manager for

z/OS paths and encryption configuration.

TS1120, TS1130, and TS1140 Tape Drive Installation Process
for Encryption

Before the IBM service representative does the installation or upgrade on the
TS1120 (3592 Model E05), TS1130 (3592 Model E06), or TS1140 (3592 Model E07)
Tape Drives for encryption, you must:

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 23

|

v Decide which method of encryption management to use (application-managed
encryption, system-managed encryption, or library-managed encryption). See
“Managing Encryption” on page 8.

v Install and configure the Security Key Lifecycle Manager for z/OS. See
Chapter 3, “Installing the Security Key Lifecycle Manager for z/OS and
Keystores,” on page 43.

Encryption Setup Procedure for IBM Service
About this task

The following steps are performed by the IBM Service Representative:

Procedure
1. Record the serial numbers of all 3592 E05, E06, or EU6 tape drives. Provide

these numbers to the customer (optional if the customer plans to set the
Security Key Lifecycle Manager for z/OS configuration to
drive.acceptUnknownDrives=true for automatic addition of tape drives to
device table).

2. Install 3592 E05, E06, EU6 Tape Drives
a. If adding new 3592 E05, E06, or EU6 encryption-capable drives to an

existing frame, see 3494 Maintenance Information or 3584 Maintenance
Information for installation instructions. When installation is complete,
continue at step 3.

b. If replacing current 3592 E05, E06, or EU6 drives with new ones, see 3494
Maintenance Information or 3584 Maintenance Information for drive FRU
replacement instructions. When replacement is complete, continue at step 3.

c. If upgrading current 3592 E05, E06, or EU6 drives, see Feature Code 5592
MES Installation Instructions. When upgrade is complete, continue at step 3.

3. Configure 3592 E05, E06, or EU6 tape drives for Encryption.
a. If 3592 E05, E06, or EU6 tape drives are installed in an Enterprise System

and connected to a 3592 C06 or J70, you must use system-managed
encryption only. If the drives are installed in a 3494 or Standalone Frame, go
to step 4. If the drives are installed in a 3584 library, configure and
encryption-enable the tape drives using the System Storage Tape Specialist
web interface. When tape drives are configured, continue at step 5.

b. If 3592 E05, E06, or EU6 tape drives are installed in a 3494 Open System,
the 3494 Web Specialist can now be used to enable-encryption them. See
IBM TotalStorage Automated Tape Library (3494) Operator's Guide. Then
continue at step 5.

c. If 3592 E05, E06, or EU6 tape drives are installed in a 3584 Open System, the
customer configures, and encryption-enables the tape drives using the
System Storage Tape Specialist web interface. When tape drives are
configured, continue at step 5.

4. Encryption-enable the 3592 tape drives by following the procedure for “Setting
Drive Encryption” in 3592 Maintenance Information. When tape drives are
encryption-enabled, continue at step 6.

5. Use the System Storage Tape Specialist web interface to verify that the 3592
Tape Drives are encryption-enabled. For example, select Manage Library > By
Logical Library > (Select Library) Modify Encryption Method > GO.

6. If the 3592 E05, E06, or EU6 tape drives are encryption-enabled for Enterprise
Systems, follow the 3592 C06 or J70 Maintenance Information and Installation and

24 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

|

Configuration Guide (ICG). Follow the guide to configure the controllers for
encryption, then continue at step 7. If the 3592 E05, E06, or EU6 tape drives are
installed in a rack, continue at step 8.

7. Run Library Verify.
8. Go to End-Of-Call Procedures in the appropriate Maintenance Information.

LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive
Installation Process for Encryption

Familiarize yourself with the required installation process for the supported LTO
drives.
v Decide which method of encryption management to use (application-managed

encryption, system-managed encryption, or library-managed encryption). See
“Managing Encryption” on page 8.

v Install and configure the Security Key Lifecycle Manager for z/OS. SeeChapter 3,
“Installing the Security Key Lifecycle Manager for z/OS and Keystores,” on
page 43.

v Use the System Storage Tape Specialist web interface to verify that the LTO
Ultrium 4 and LTO Ultrium 5 tape drives are encryption-enabled. Select Manage
Library > By Logical Library > (Select Library) Modify Encryption Method >
GO.

See “Configuring Security Key Lifecycle Manager for z/OS for LTO Ultrium 4 and
LTO Ultrium 5 encryption” on page 87 for more information about LTO.

DS8000 Installation Process for Encryption
The following describes the installation process for IBM System Storage DS8000 for
encryption.
v Install and configure the Security Key Lifecycle Manager for z/OS. See

Chapter 3, “Installing the Security Key Lifecycle Manager for z/OS and
Keystores,” on page 43.

v Ensure that the DS8000 is encryption-enabled. For more information about
DS8000 encryption, see http://publib.boulder.ibm.com/infocenter/dsichelp/
ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc
%2Ff2c_enc_bestpractice_intro_3ekm9r.html

v Create or import certificates for the Security Key Lifecycle Manager for z/OS
keystore, using the corresponding keytool.

v Define the DS8000 to the Security Key Lifecycle Manager for z/OS or set
ds8k.acceptUnknownDrives configuration property value to true. (See
“adddrive” on page 92 to define drives explicitly, or see “Automatically update
device table” on page 79.)

Note: The certificate configured in the DS8000 is required so that Security Key
Lifecycle Manager for z/OS can automatically add the DS8000.

For more information about installation information related to your DS8000, see
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=
%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 25

http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_enc_bestpractice_intro_3ekm9r.html

Keystore Considerations
It is impossible to overstate the importance of preserving your keystore data. You
will not be able to decrypt your encrypted tapes if you do not have access to your
keystore. Carefully read the topics below to understand the methods available for
protecting your keystore data.

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore types
concurrently in the Security Key Lifecycle Manager for z/OS configuration file.
You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

If you plan to use a large number of keys (approximately 100,000) in either JCEKS
or JCEECCAKS keystore, increase the Java heap to 512M. Otherwise, Security Key
Lifecycle Manager for z/OS may not start and you may get this error message
when loading the keystore:

Exception in thread "main" java.lang.OutOfMemoryError

at java.lang.StringBuffer, <init>(StringBuffer.java:65)

at java.lang.StringBuffer, <init>(StringBuffer.java:52)

The other keystores are not affected because the number of keys should never be
this large.

Importance of keys and certificates
The Security Key Lifecycle Manager for z/OS and all its supported tape drives use
symmetric, 256-bit AES keys to encrypt data. There are important differences in the
way that TS1120, TS1130, or TS1140 and LTO Ultrium 4, or LTO Ultrium 5 tape
drives handle keys and certificates. The following topics explain these differences.

Encryption Keys and the TS1120, TS1130, TS1140 Tape Drives

In addition to 256-bit AES symmetric data keys, the Security Key Lifecycle
Manager for z/OS also uses public and private (asymmetric) key cryptography. This
type of cryptography protects the symmetric data encryption keys generated and
retrieved as they pass between the Security Key Lifecycle Manager for z/OS and
tape drives. Public and private key cryptography also verifies the identity of the
tape drives to which the Security Key Lifecycle Manager for z/OS serves keys.

When a TS1120, TS1130, or TS1140 tape drive requests a key, the Security Key
Lifecycle Manager for z/OS generates a random symmetric data encryption key
(DK). Public and private key cryptography wraps, or encrypts, the data encryption
key (DK) using a key encryption key (KEK), the public key of an asymmetric key
pair. The wrapped data key, along with key label information about what private
key is required to unwrap the symmetric key. This information forms a digital
envelope called an Externally Encrypted Data Key (EEDK) structure. The EEDK is
stored in the tape leader area of any tape cartridge that holds data encrypted using
this method. In this way, the key used to decrypt the data is stored with the data
on the tape itself, protected by asymmetric, public and private key wrapping. The
public key used to wrap that data key is obtained from one of two sources:
v A certificate (from a business partner, for example) stored in the Security Key

Lifecycle Manager for z/OS's keystore, or

26 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

v A public key (part of an internally generated public and private key pair) stored
in the Security Key Lifecycle Manager for z/OS's keystore

The DK is only stored on the tape, in a wrapped, protected form.

When an encrypted tape is to be read by a TS1120, TS1130, or TS1140 tape drive,
the tape drive sends the EEDK to the Security Key Lifecycle Manager for z/OS.
Security Key Lifecycle Manager for z/OS determines from the alias or key label
which private KEK from its keystore to use, and uses the information to unwrap
the EEDK and recover the DK. When the DK is recovered, it is then wrapped with
a different key, which the tape drive can decrypt, and send back to the tape drive.
This process enables the tape drive to decrypt the data.

The Security Key Lifecycle Manager for z/OS uses aliases, also known as key
labels. The key labels identify the public and private keys that are used to wrap
the EEDK when encrypting with TS1120, TS1130, or TS1140 tape drives. Specific
aliases can be defined for each tape device in the device table. The Security Key
Lifecycle Manager for z/OS can also be set up to apply global default aliases. For
more information, see “Global default alias (key label) for TS1120, TS1130, and
TS1140 tape drive writes” on page 80. If your encryption-enabled tape drives are in
a tape library, you can have the library define the key labels. The key labels can
then be passed directly to the tape drive. If your encryption-enabled tape drives
are in a z/OS environment, you can have the key labels defined through the host.
The key labels can then be passed directly to the tape drive. See z/OS DFSMS
Software Support for IBM System Storage TS1130 and TS1120 Tape Drives (3592) for
information about specifying key labels at the host.

The Security Key Lifecycle Manager for z/OS requires the definition of at least two
aliases (certificates or key labels) for each encrypting tape drive. This requirement
enables access to the encrypted data at another location, whether within your
organization or outside it. The private key for one of these aliases must be known.
If you do not want to specify two different key labels or aliases, you can define
both aliases with the same value. The Security Key Lifecycle Manager for z/OS
searches for two alias values in the following order:
1. From the system (for example, from DFSMS for system-managed encryption),

from the library, or from the application (for example, from Tivoli Storage
Manager for application-managed encryption)

2. From the drive default alias (defined in the device table)
3. From the global default alias (drive.default.alias1 and drive.default.alias2 in the

configuration file)

The Security Key Lifecycle Manager for z/OS requires that two aliases or key
labels be associated in pairs for each encrypting tape drive. Whether you use
default aliases defined in the device table, global default aliases, or library-defined
key labels, you must use them in pairs (#1 value and #2 value). Table 7 shows how
aliases and key labels can be combined.

Table 7. Allowed alias and key label pairs. Define a minimum of one #1 and one #2.

App Key #1
Drive

Default #1
Global

Default #1 App Key #2
Drive

Default #2
Global

Default #2

X X

X X

X X

X X

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 27

Table 7. Allowed alias and key label pairs (continued). Define a minimum of one #1 and
one #2.

App Key #1
Drive

Default #1
Global

Default #1 App Key #2
Drive

Default #2
Global

Default #2

X X

X X

X X

X X

X X

Figure 7 explains how keys are processed for encrypted write operation.

1. Tape drive requests key to encrypt tape
2. Security Key Lifecycle Manager for z/OS verifies tape device in Device Table
3. Security Key Lifecycle Manager for z/OS fetches keys and certificates for tape

device from keystore
4. Security Key Lifecycle Manager for z/OS generates a random DK
5. Security Key Lifecycle Manager for z/OS wraps DK with public key to create

an EEDK
6. Security Key Lifecycle Manager for z/OS sends the EEDK and (separately

wrapped) DK to the tape drive
7. Tape drive unwraps the DK and writes the EEDK on tape leader
8. Tape drive encrypts data using DK and writes encrypted data to tape

Figure 8 on page 29 shows how keys are processed for encrypted read operation.

1

2

4

5
7

8

3 KEK

DK

Easy{DK,KEK}=EEDK
6 EEDK

a
1
4
m

0
1
9
4

Config
File

Key
store

Device
Table

IBM Security Key
Lifecycle Manager

for z/OS

Figure 7. How the Security Key Lifecycle Manager for z/OS Responds to TS1120, TS1130, and TS1140 Tape Drive
Requests for Encryption Write Operation

28 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

1. Tape drive receives read request and sends the EEDK to Security Key Lifecycle
Manager for z/OS

2. Security Key Lifecycle Manager for z/OS verifies tape device in Device Table
3. Security Key Lifecycle Manager for z/OS fetches keys required to process the

EEDK from keystore
4. Security Key Lifecycle Manager for z/OS unwraps EEDK using private key of

KEK pair to recover DK
5. Security Key Lifecycle Manager for z/OS wraps the DK with a key the drive

can decrypt and sends the wrapped DK to tape drive
6. Tape drive unwraps the DK and uses it to decrypt the data or to perform a

write-append

The certificates and keys stored in the Security Key Lifecycle Manager for z/OS
keystore are the point of control. The keystore allows a tape drive or library to
decrypt the data on the tape. This makes the information in the keystore vital.
Without the keystore, the tape cannot be read. It is important that this information
is protected so that others cannot obtain the private keys from the keystore. It is
also crucial that this information always is available to you so that you can read
the tapes whenever necessary.

Encryption Keys and the LTO Ultrium 4 Tape Drive and LTO
Ultrium 5

Only 256-bit AES symmetric data keys are used when the Security Key Lifecycle
Manager for z/OS performs encryption tasks on the LTO Ultrium 4 Tape Drive
and LTO Ultrium 5 Tape Drive for LTO Ultrium 4 and LTO Ultrium 5 tape
cartridges.

When an LTO Ultrium 4 or LTO Ultrium 5 requests a key, the Security Key
Lifecycle Manager for z/OS uses the alias specified for the tape drive. If no alias
was specified for the tape drive, an alias from a key group, key alias list, or range
of key aliases specified in the symmetricKeySet configuration property is used.
Lacking a specific alias for the tape drive, aliases are selected from the other
entities in round robin fashion to balance the use of keys evenly.

The selected alias is associated with a symmetric Data Key (DK) that was
preloaded in the keystore. The Security Key Lifecycle Manager for z/OS sends this

Config
File

Key
store

Device
Table

1

2

4
6

3 KEK

Dasy{EEDK,KEK}=DK

EEDK

5 DK

a
1
4
m

0
1
9
5

IBM Security Key
Lifecycle Manager

for z/OS

Figure 8. How the Security Key Lifecycle Manager for z/OS Responds to TS1120, TS1130. and TS1140 Tape Drive
Requests for Encryption Read Operation

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 29

DK to the LTO Ultrium 4 or LTO Ultrium 5 tape drive to encrypt the data. The
selected alias is also converted to an entity called Data Key identifier (DKi), which
is written to tape with the encrypted data. The Security Key Lifecycle Manager for
z/OS can use the DKi to identify the correct DK required to decrypt the data when
the LTO Ultrium 4 or LTO Ultrium 5 tape is read.

The adddrive and moddrive topics in “Command Line Interface Commands” on
page 92 show how to specify an alias for a tape drive. See “Generating Keys and
Aliases for Encryption on LTO Ultrium 4 and LTO Ultrium 5” on page 72. The
topic explains importing keys, exporting keys, and specifying default aliases in the
symmetricKeySet configuration property. “Creating and managing key groups” on
page 76 shows how to define a key group and populate it with aliases from your
keystore.

Figure 9 explains how keys are processed for encrypted write operation.

1. Tape drive requests key to encrypt tape
2. Security Key Lifecycle Manager for z/OS verifies tape device in Device Table
3. If no alias is specified in the request and no alias is specified in the device

table, the Security Key Lifecycle Manager for z/OS selects an alias from the set
of aliases or the key group in the keyAliasList

4. Security Key Lifecycle Manager for z/OS fetches a corresponding DK from the
keystore

5. Security Key Lifecycle Manager for z/OS converts the alias to a DKi and wraps
the DK with a key the drive can decrypt

6. Security Key Lifecycle Manager for z/OS sends the DK and DKi to the tape
drive

7. Tape drive unwraps the DK and writes encrypted data and DKi to tape

Figure 10 on page 31 shows how keys are processed for encrypted read operation.

Config
File

Key
store

Device
Table

1

24

5
7

3 alias

6DK, DKi

DK

a
1
4
m

0
2
3
7

IBM Security Key
Lifecycle Manager

for z/OS

Figure 9. LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Request for Encryption Write Operation

30 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

1. Tape drive receives read request and sends DKi to Security Key Lifecycle
Manager for z/OS

2. Security Key Lifecycle Manager for z/OS verifies tape device in Device Table
3. Security Key Lifecycle Manager for z/OS translates DKi to alias and fetches

corresponding DK from keystore
4. Security Key Lifecycle Manager for z/OS wraps the DK with a key the drive

can decrypt
5. Security Key Lifecycle Manager for z/OS sends the wrapped DK to tape drive
6. Tape drive unwraps the DK and uses it to decrypt the data

Encryption Keys and the DS8000

Security Key Lifecycle Manager for z/OS also uses public and private (asymmetric)
key cryptography to protect 256-bit AES symmetric unlock keys as they pass
between Security Key Lifecycle Manager for z/OS and the DS8000.

When a DS8000 requests a new key, Security Key Lifecycle Manager for z/OS
generates a random symmetric unlock key. Public and private key cryptography is
used to wrap the unlock key using a key encryption key, which is the public key
of an asymmetric key pair.

The wrapped data key, along with the key label information about the private key
that is required to unwrap the symmetric key, forms a digital envelope called an
Externally Encrypted Data Key (EEDK) structure that is stored on the DS8000. The
key used to unlock the DS8000 is stored on the DS8000 with all the data on the
DS8000, protected by asymmetric public and private key wrapping. The public key
that wraps that data key is obtained from one of two sources:
v A certificate from another source such as another business partner, or a different

Security Key Lifecycle Manager for z/OS which is stored in the keystore.
v A certificate with it's associated private key that was generated as part of

configuration of Security Key Lifecycle Manager for z/OS and is stored in the
keystore.

The certificates and keys stored in the keystore are the point of control to unlock a
DS8000. Without the information in the keystore, the DS8000 cannot be unlocked.

1

2

4
5

6

3 DKi Alias

DK

a
1
4
m

0
2
3
8

Config
File

Key
store

Device
Table

IBM Security Key
Lifecycle Manager

for z/OS

Figure 10. LTO Ultrium 4 and LTO Ultrium 5 Tape Drive Request for Encryption Read Operation

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 31

It is important to prevent unauthorized users from obtaining the private keys from
the keystore. Make sure that the keystore is always available so that you can
unlock the arrays. The unlock key is stored only on the DS8000 in a wrapped,
protected form.

When a DS8000 must be unlocked, the Security Key Lifecycle Manager for z/OS
receives the Externally Encrypted Data Key and determines from the alias or key
label which private key encryption key to use from its keystore. Security Key
Lifecycle Manager for z/OS unwraps the Externally Encrypted Data Key and
recovers the unlock key. After the unlock key is recovered, it is then wrapped with
a different key, which the DS8000 can use to decrypt and send back to the DS8000,
enabling the DS8000 to unlock disk drives.

Security Key Lifecycle Manager for z/OS uses aliases, also known as key labels, to
identify the public and private keys used to wrap the unlocking key. Specific
aliases can be defined for each device. You can define up to two aliases (certificates
or key labels) for each DS8000 to help prevent deadlock conditions in which the
Security Key Lifecycle Manager for z/OS is on the same system as the DS8000,
which must unlock before the Security Key Lifecycle Manager for z/OS can start.
The private key for one of these aliases must be known. If you do not want to
specify two different key labels or aliases, you can define both aliases with the
same value.

Figure 11 shows how keys are processed for an encrypted write operation.

1. DS8000 requests key to unlock the drives
2. Security Key Lifecycle Manager for z/OS verifies DS8000 is in Device Table
3. Security Key Lifecycle Manager for z/OS generates a random symmetric

unlock key
4. Security Key Lifecycle Manager for z/OS wraps unlock key with public key to

create an EEDK
5. Security Key Lifecycle Manager for z/OS sends the EEDK and (separately

wrapped) unlock key to the DS8000 drive
6. DS8000 unwraps the DK and writes the EEDK on the DS8000

Key
store

Device
Table

Config
File

IBM Security Key Lifecycle
Manager for z/OS

Unlock Key

EEDK

KEK

1

23

5 6

7

asy{DK, KEK} = EEDK

4

E

Figure 11. DS8000 Request for Encryption Write Operation

32 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

7. DS8000 encrypts data using unlock key and writes encrypted data to DS8000

Figure 12 shows how keys are processed for encrypted read operation.

1. DS8000 receives read request and sends the EEDK to Security Key Lifecycle
Manager for z/OS

2. Security Key Lifecycle Manager for z/OS verifies DS8000 is in the Device Table
3. Security Key Lifecycle Manager for z/OS fetches certificate required to process

the EEDK from keystore
4. Security Key Lifecycle Manager for z/OS unwraps EEDK using private key of

KEK pair to recover unlock key
5. Security Key Lifecycle Manager for z/OS wraps unlock key with a key the

drive can decrypt and sends the wrapped unlock key to DS8000
6. DS8000 unwraps the unlock key and uses it to decrypt the data or to perfom a

write-append

Backing up Keystore Data

Note: Due to the critical nature of the keys in your keystore, it is vital that you
back up this data on a non-encrypted device. The backup is critical so that you
can recover it as needed and be able to read the tapes that were encrypted using
those certificates associated with that tape drive or library. Failure to back up
your keystore properly can result in irrevocably losing all access to your
encrypted data.

There are many ways to back up this keystore information. Each keystore type has
it own unique characteristics. These are explained in more detail in “Which
Keystore is Right for You” on page 36 These general guidelines apply to all:
v Keep a copy of all certificates loaded into the keystore.
v Use system backup capabilities (such as RACF) to create a backup copy of the

keystore information. Be careful not to encrypt this copy using the encrypting
tape drives as it would impossible to decrypt it for recovery.

Key
store

Device
Table

Config
File

IBM Security Key Lifecycle
Manager for z/OS

Key
Unlock
Key

EEDK

KEK

1

23

4
5

6

asy{EEDK, KEK} = UnlockD

Figure 12. DS8000 Request for Encryption Read Operation

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 33

v Maintain a primary and secondary Security Key Lifecycle Manager for z/OS and
keystore copy (for backup and failover redundancy).

v For a JCEKS keystore, copy the keystore file and store the clear (unencrypted)
copy in a secure location such as a vault. Be careful not to encrypt this copy
using the encrypting tape drives as it would be impossible to decrypt it for
recovery.

At a minimum, back up your keystore data whenever you change it. The Security
Key Lifecycle Manager for z/OS does not modify keystore data. The only changes
to the keystore are the changes that you apply, so be sure to copy the keystore as
soon as you change it.

Multiple Key Lifecycle Manager for z/OS for redundancy
The Security Key Lifecycle Manager for z/OS is designed to work with supported
devices. This design allows redundancy, and thus high availability. You can have
multiple Security Key Lifecycle Manager for z/OS servicing the same devices.
Moreover, these Security Key Lifecycle Manager for z/OSs are not required to be
on the same systems as the devices. The maximum number of Security Key
Lifecycle Manager for z/OS depends on your library or proxy. The only
requirement is that they be available to the devices through TCP/IP connectivity.

This enables you to have two sets of Security Key Lifecycle Manager for z/OS.
They are mirror images of each other. They have built-in backup of the critical
information about your keystores, and as a failover in the event one Security Key
Lifecycle Manager for z/OS is not available. When you configure your device (or
proxy) you can point it to two sets of Security Key Lifecycle Manager for z/OS. If
one Security Key Lifecycle Manager for z/OS is not available, your device (or
proxy) uses the other Security Key Lifecycle Manager for z/OS.

You can also keep the two sets of Security Key Lifecycle Manager for z/OS
synchronized. It is critical that you take advantage of this important function when
needed. Use the feature for its inherent backup of critical data and also for its
failover capability to avoid any outages in your tape operations. See
“Synchronizing data between two Security Key Lifecycle Manager for z/OS
servers” on page 80.

Note: Synchronization does not include keystores. They must be copied manually.

Security Key Lifecycle Manager for z/OS Server
Configurations

The Security Key Lifecycle Manager for z/OS may be installed on a single-server
or on multiple servers. The examples show one- and two-Security Key Lifecycle
Manager for z/OS configurations but your library may allow more.

Single-Server Configuration
A single-server configuration, shown in Figure 13 on page 35, is the simplest
Security Key Lifecycle Manager for z/OS configuration; because of the lack of
redundancy, this configuration is not commonly used. In this configuration, all tape
drives rely on a single server with no backup. If the server goes down, the
keystore, configuration file, KeyGroups.xml file, and device table are unavailable,
making any encrypted tape unreadable. In a single-server configuration you must
ensure that back up copies of the keystore, configuration file, KeyGroups.xml file,
and device table are maintained in a safe place. The files must be separate from the
Security Key Lifecycle Manager for z/OS. The files must be separate so its function

34 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

can be rebuilt on a replacement server if the server copies are lost.

Two-Server Configurations
A two-server configuration is commonly used. This configuration ensures
automatic failover to the secondary Security Key Lifecycle Manager for z/OS if the
primary is not accessible.

Note: When different Security Key Lifecycle Manager for z/OS servers handle
requests from the same tape drives, information in the associated keystores must
be identical. This requirement ensures that regardless of which server is contacted,
the necessary information is available to support requests from the tape drives.

Identical configurations: For two Security Key Lifecycle Manager for z/OS
servers with identical configurations, processing automatically performs a failover
to the secondary server if the primary is not accessible. An example is shown in
Figure 14. This configuration requires synchronized servers. Updates to the
configuration file and device table of one server can be duplicated on the other
automatically. You can use the sync command, but updates to one keystore must
be copied to the other using methods specific to the keystore being used. The
keystores and key groups XML file must be copied manually. See “Synchronizing
data between two Security Key Lifecycle Manager for z/OS servers” on page 80
for more information.

Separate configuration: Two Security Key Lifecycle Manager for z/OS servers can
share a common keystore. They can also share a device table yet have two different
configuration files and two different sets of key groups defined in their XML files.
The only requirement is that the keys used to serve the common tape drives must
be the same for each server. This requirement allows each server to have its own
set of properties. An example of this type of configuration is shown in Figure 15 on
page 36. Only the device table must be synchronized between servers. (See
“Synchronizing data between two Security Key Lifecycle Manager for z/OS

Key Store

Device Table

Config File

Key Groups

a
1
4
m

0
2
5
6

Tape Library
A

Tape Library
B

Tape Library
C

IBM Security Key
Lifecycle Manager

for z/OS

Figure 13. Single Server Configuration

=
=
=
=

Key Store
Device Table
Config File
Key Groups

Key Store
Device Table

Config File
Key Groups

Tape Library
A

Tape Library
B

Tape Library
C a

1
4
m

0
2
5
4

Primary
IBM Security Key
Lifecycle Manager

for z/OS

Secondary
IBM Security Key
Lifecycle Manager

for z/OS

Figure 14. Two Servers with Shared Configurations

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 35

servers” on page 80 for more information.) Be sure to specify sync.type =
drivetab (do not specify config or all) to prevent the configuration files from being
overwritten.

Note: There is no way to partially share the configuration between servers.

Which Keystore is Right for You
The Security Key Lifecycle Manager for z/OS uses standard and operating
system-specific Java keystore methods to store the public and private key and
certificate information. This information is required to build and interpret EEDKs
sent to and received from a tape drive or library. The information is also used to
write and read encrypted tapes. The Security Key Lifecycle Manager for z/OS
supports four keystore types. These keystore types are described to help you
determine which is best for you.

Table 8. Summary of Supported Keystores

Keystore Platform

TS1120, TS1130,
TS1140, &
DS8000
(store keypairs
& certs)

LTO
(store symmetric
keys)

TS1120, TS1130,
TS1140, LTO, &
DS8000

Symmetric key
tools available

JCEKS z/OS X X X keytool

JCECCAKS z/OS X X X hwkeytool

JCERACFKS z/OS X N.A.

JCECCARACFKS z/OS X N.A.

z/OS Keystore Options

The following keystore types are supported:
v JCEKS (UNIX System Services file based)

A file-based keystore where Security Key Lifecycle Manager for z/OS runs. It is
relatively easy to copy the contents of this keystore for backup and recovery, and
to keep two Security Key Lifecycle Manager for z/OS instances synchronized for
failover. JCEKS provides password-based protection of the contents of the
keystore for security, and provides relatively good performance. File copy
methods such as FTP can be used.

v JCECCAKS (Certificates in a file and keys can be protected by ICSF based on
options chosen)

=
=

Key Store

Device Table

Config File

Key Groups

Key Store

Device Table

Config File

Key Groups

a
1
4
m

0
2
5
5

=

Tape Library
A

Tape Library
B

Tape Library
C

Primary
IBM Security Key
Lifecycle Manager

for z/OS

Secondary
IBM Security Key
Lifecycle Manager

for z/OS

Figure 15. Two Servers with Different Configurations Accessing the Same Devices

36 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

A file-based keystore supported on the z/OS platform only. This keystore can be
created and managed through the JVM hwkeytool command and can create
ICSF key entries. Possible hwkeytool hardwarekeytype(s) that can be defined
when creating your RSA key pair are:

PKDS
The RSA private key resides in the PKDS and is protected by ICSF.

CKDS
The symmetric keys (AES, DESede) key resides in the CKDS and is
protected by ICSF.

CLEAR
Key resides in a java keystore file. There is no ICSF security with using this
option.

Note: In order for JCECCAKS to support symmetric keys, you must have
installed SDK 50 sr6 at a minimum. If you only use JCEKS on z/OS, the
minimum SDK installation is 50 sr5.
Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore
types concurrently in the Security Key Lifecycle Manager for z/OS configuration
file. You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

v JCECCARACFKS (Certificates stored in RACF and keys protected by ICSF)
A SAF keyring/ICSF-based keystore supported on the z/OS platform only. This
keystore can be created and managed through the RACDCERT or equivalent
SAF certificate management command. This keystore uses certificates generated
in RACF or SAF equivalent where the key material is stored in ICSF. The
JCECCARACFKS keystore uses all the security advantages of both RACF/SAF
and ICSF.

Note: This keystore type does not support symmetric keys. Therefore, to
support LTO Ultrium 4 and LTO Ultrium 5 tape drives, a JCEKS, or JCECCAKS
keystore must be used. If you are using only TS1120, TS1130, TS1140 tape drives
or DS8000, then any of the supported keystores can be used. If you are using
only LTO Ultrium 4 and LTO Ultrium 5 tape drives or using a combination of
TS1120, TS1130, TS1140, DS8000, LTO Ultrium 4 and LTO Ultrium 5 tape drives
with the same tape library, then a JCEKS or JCECCAKS keystore must be used.
If you are using a combination of storage devices and you have a different tape
library for each type, then you can have one Security Key Lifecycle Manager for
z/OS running with an JCECCARACFKS keystore for the DS8000, TS1120,
TS1130, or TS1140 tape drive or library. Another Security Key Lifecycle Manager
for z/OS runs with a JCEKS or JCECCAKS keystore for the LTO Ultrium 4 and
LTO Ultrium 5 tape drive/library. The two Security Key Lifecycle Manager for
z/OS servers can run on the same system if they listen on different ports.

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore
types concurrently in the Security Key Lifecycle Manager for z/OS configuration
file. You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

v JCERACFKS (Certificates and key material stored in RACF)
A SAF keyring-based keystore supported on the z/OS platform only. This
keystore can be created and managed through the RACDCERT or equivalent
SAF management command. This keystore uses certificates generated in

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 37

RACF/SAF where the key material is stored in RACF/SAF. The JCERACFKS
keystore uses all the security advantages of RACF/SAF while using software
cryptography and software-based security.

Note: This keystore type does not support symmetric keys. Therefore, to
support LTO Ultrium 4 and LTO Ultrium 5 tape drives, a JCEKS, or JCECCAKS
keystore must be used. If you are using only TS1120, TS1130, TS1140 tape drives
or DS8000, then any of the supported keystores can be used. If you are using
only LTO Ultrium 4 and LTO Ultrium 5 tape drives or using a combination of
TS1120, TS1130, TS1140, DS8000, LTO Ultrium 4 and LTO Ultrium 5 tape drives
with the same tape library, then a JCEKS or JCECCAKS keystore must be used.
If you are using a combination of storage devices and you have a different tape
library for each type, then you can have one Security Key Lifecycle Manager for
z/OS running with an JCECCARACFKS keystore for the DS8000, TS1120,
TS1130, or TS1140 tape drive or library. Another Security Key Lifecycle Manager
for z/OS runs with a JCEKS or JCECCAKS keystore for the LTO Ultrium 4 and
LTO Ultrium 5 tape drive/library. The two Security Key Lifecycle Manager for
z/OS servers can run on the same system if they listen on different ports.

Managing Keystores
When you have decided which keystore is best for your environment, you can
create a keystore. If you already have a keystore, you can import keys and
certificates.

Attention: You cannot use both JCECCAKS and JCECCARACFKS keystore types
concurrently in the Security Key Lifecycle Manager for z/OS configuration file.
You must specify only one of these types in the configuration file. If the
JCECCAKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

Keystore Passwords must not be longer than 127 Characters

The passwords for keystores in use by the Security Key Lifecycle Manager for
z/OS are restricted to 127 or fewer characters. Keystore passwords 128 characters
or greater in length cause the obfuscation code to fail with a
NegativeArraySizeException on Security Key Lifecycle Manager for z/OS startup.
This restriction is enforced as follows:
v If you are prompted for a keystore password, you must provide a password of

fewer than 128 characters, otherwise, startup does not proceed.

If any keystores are already created with passwords 128 characters in length or
greater, these keystore passwords can be changed using keytool. Keep in mind that
the password cannot be changed only on the keystore itself, but must be changed
for each key in the keystore. See “Changing Keystore Passwords” on page 74.

Managing Keystores on System z Platforms

For file-based (JCEKS) keystores
The standard Java tool for creating a JCEKS keystore and managing its keys
and certificates is keytool. Visit http://www.ibm.com/developerworks/java/
jdk/security/142/ for details on keytool usage.

For RACF keystores (keyrings) which can optionally use ICSF
The RACDCERT command is the interface used to create and manage keys,
digital certificates, key rings, and digital certificate mappings in RACF. The
RACDCERT command is documented and explained in the z/OS Security Server

38 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://www.ibm.com/developerworks/java/jdk/security/142/
http://www.ibm.com/developerworks/java/jdk/security/142/

RACF Command Language Reference. This publication can be found in the z/OS
internet library at the URL: http://publibz.boulder.ibm.com/epubs/pdf/
ichza460.pdf.

For ICSF-based keystores not using RACF
The Java hwkeytool application can create and manage the RSA keypairs and
the symmetric keys (AES, or DESede) used by the devices supported by this
product. See ftp://ftp.software.ibm.com/s390/java/jce4758/hwkeytool.html
for details on using hwkeytool.

Disaster Recovery Site Considerations
If you plan to use a disaster recovery (DR) site, the Security Key Lifecycle Manager
for z/OS provides a number of options. The options setup the DR site to read and
write encrypted tapes. These options are:
v Create a duplicate Security Key Lifecycle Manager for z/OS at the DR site.

Set up a duplicate Security Key Lifecycle Manager for z/OS at the DR site. The
duplicate has the same information as your local Security Key Lifecycle Manager
for z/OS (configuration file, device table, key groups XML file, and keystore).
This Security Key Lifecycle Manager for z/OS would then be in place. It can
take over for one of your existing production Security Key Lifecycle Manager for
z/OS to read and write encrypted tapes.

v Create a backup copy of the three Security Key Lifecycle Manager for z/OS data
files to be able to recover as needed.
If you create a current copy of the four data elements needed by the Security
Key Lifecycle Manager for z/OS then you can start a version at any time. You
can start the software to act as a duplicate at the DR site. (Do not use the
Security Key Lifecycle Manager for z/OS to encrypt the copies of these files. You
must have a functioning product to decrypt files). If your DR site uses different
tape drives from your primary site, the configuration file and device table must
contain the correct information.

v TS1120, TS1130, or TS1140 tape drives can use the second EEDK on each tape to
encrypt tapes. Such that a private key, which is unique to the DR site, is one of
the entities that can read the encrypted tape. To do this setup, import the public
key of the DR site. Another method is to copy their keystore. You can write an
alternate certificate for the DR site. This certificate consists of using the
certificate of the DR site to write your existing tapes in the same way that you
provide this capability to another organization. You must store your data
encryption key on your tapes. The date encryption key must be wrapped using
the public and private key of your organization. In addition, the data key would
also be stored on the same tapes wrapped using the public key (certificate) of
the DR site. This setup allows a functioning Security Key Lifecycle Manager for
z/OS at that site to use its own keystore, with its own public and private key, to
read the tapes. See “Considerations for Sharing Encrypted Tapes Off-site” on
page 40 for more information. If your DR site uses different tape drives from
your primary site, the configuration file and device table must contain the
correct information. If the information is not correct the device table is of no use
at the DR site.

For DS8000, only the use of a duplicate Security Key Lifecycle Manager for z/OS
at the DR site and creating a backup copy of the data files are applicable. For more
information about DS8000 disaster recovery, see http://publib.boulder.ibm.com/
infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc
%2Ff2c_disasterrecover_1v0tts.html

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 39

http://publibz.boulder.ibm.com/epubs/pdf/ichza460.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ichza460.pdf
ftp://ftp.software.ibm.com/s390/java/jce4758/hwkeytool.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_disasterrecover_1v0tts.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_disasterrecover_1v0tts.html
http://publib.boulder.ibm.com/infocenter/dsichelp/ds8000ic/index.jsp?topic=%2Fcom.ibm.storage.ssic.help.doc%2Ff2c_disasterrecover_1v0tts.html

Considerations for Sharing Encrypted Tapes Off-site
It is common practice to share tapes with other organizations for data transfer,
joint development, contracting services, or other purposes. The methods for
sharing encrypted tapes differ for TS1120, TS1130, TS1140 and LTO Ultrium 4, or
LTO Ultrium 5 tapes.

Note: It is important to verify that any certificate received from a business partner
is valid. Verify by checking the chain of trust of such a certificate back to the
Certificate Authority (CA) that ultimately signed it. If you trust the CA, then you
can trust that certificate. Alternately, the validity of a certificate can be verified if it
was securely guarded in transit. If you do not verify the validity of a certificate in
one of these ways, a “Man-in-the-Middle” attack can occur.

Sharing TS1120, TS1130, or TS1140 Tapes

The Security Key Lifecycle Manager for z/OS can store two sets of wrapped
encryption keys on the IBM TotalStorage Enterprise Tape Cartridge 3592. The
another organization can then read that specific tape without you providing them
any shared secret information. This setup ensures that you are not compromising
the security of your certificates and keys.

This is done by adding the public part of the public and private certificate and
keys of the organization to your Security Key Lifecycle Manager for z/OS keystore.
It is added using a second alias (or key label). When the tape is written the
encryption keys are stored on the tape, protected by two sets of public and private
keys, yours and the other organization's. The other organization must have an
encryption-enabled TS1120, TS1130, or TS1140 Tape Drive. The organization can
then use their Security Key Lifecycle Manager for z/OS. The organization can use
their private key to unwrap the data key to read that specific tape.

To reiterate, your Security Key Lifecycle Manager for z/OS must have the
certificate of the partner organization. The other organization must have the
associated private key in the keystore used by Security Key Lifecycle Manager for
z/OS of the other organization. This setup gives you the flexibility to make a
specific tape readable by both your own, and another organization. If you want to
take advantage of this capability you must add that certificate of the other
organization which contains the public key, to your keystore. See “Encryption Keys
and the TS1120, TS1130, TS1140 Tape Drives ” on page 26 for more information.

Sharing LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive
Tape

In order to share encrypted data on an LTO Ultrium 4 or LTO Ultrium 5 tapes, a
copy of the symmetric key used to encrypt the data must be available to the other
organization. This setup allows the other organization to read the tape. In order for
the symmetric key to be shared, the other organization must share their public key
with you. This public key is used to wrap the symmetric key when it is exported.
The symmetric key is exported from the Security Key Lifecycle Manager for z/OS
keystore using the keytool (see “Exporting data keys using keytool -exportseckey ”
on page 74). When the other organization imports the symmetric key into their
Security Key Lifecycle Manager for z/OS keystore, the key is unwrapped. The
symmetric key is unwrapped using their corresponding private key (see
“Importing data keys using Keytool -importseckey ” on page 74). This procedure
ensures that the symmetric key is safe in transit since only the holder of the
private key is able to unwrap the symmetric key. The other organization can then

40 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

read the data on the tape using the symmetric key used to encrypt the data in their
Security Key Lifecycle Manager for z/OS.

Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment 41

42 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 3. Installing the Security Key Lifecycle Manager for
z/OS and Keystores

This topic gives you instructions on how to set up your z/OS environment to run
the Security Key Lifecycle Manager for z/OS.

Install the Security Key Lifecycle Manager for z/OS as instructed in the Program
Directory document. See, Program Directory for IBM Security Key Lifecycle
Manager for z/OS.

The Security Key Lifecycle Manager for z/OS requires the IBM Java Software
Developer Kit 5.0 or 6.0. See “Hardware and Software Requirements” on page 17.
This topic was explained briefly in Chapter 2, “Planning your Security Key
Lifecycle Manager for z/OS Environment,” on page 17. There are many possible
ways you can set up your Security Key Lifecycle Manager for z/OS. This section
shows you how to setup keys for the four possible keystore types:
v JCEKS
v JCECCAKS
v JCERACFKS
v JCECCARACFKS

For JCECCARACFKS and JCERACFKS type keystores, it is highly encouraged that
you do not use the same character alias or label names that differ only by case for
example, MyKey and mykey. A search mismatch can occur when storing or
retrieving information from a JCECCARACFKS and JCERACFKS keystore when
using same character label or alias names differing only by case.

This topic also shows you how to run the Security Key Lifecycle Manager for z/OS
in production mode.

Attention: The Security Key Lifecycle Manager for z/OS performs the function of
requesting the generation of encryption keys. The product then passes those keys
to the TS1120, TS1130, TS1140, LTO Ultrium 4, or LTO Ultrium 5 tape drives, and
DS8000. The key material, in wrapped (encrypted) form resides in system memory
during processing by the Security Key Lifecycle Manager for z/OS. The key
material must be transferred without error to the appropriate tape drive so that
data can be recovered (decrypted). If a corrupted key material is used to write data
to a cartridge, then the data written to that cartridge cannot be recovered. There
are safeguards to make sure that such data errors do not occur. If the machine
hosting the Security Key Lifecycle Manager for z/OS is not using Error Correction
Code (ECC) memory, the key material can become corrupted while in system
memory. The corruption can then cause data loss. The chance of this occurrence is
small, but for best practices use ECC memory for machines hosting critical
applications.

Installing Java SDK and verifying the version

You need to install a Java SDK. See “Hardware and Software Requirements” on
page 17 to understand the Java requirements for Security Key Lifecycle Manager
for z/OS.

© Copyright IBM Corp. 2006, 2011 43

Verify the Java Version

It is important that you verify you have the correct version of Java installed in.
Add the Java bin directory to your PATH, which can be done by using the USS
export command as shown in the example. Replace the path with the location
where your Java SDK was installed. Then issue the java -version command and
expect to see results like shown here:

SDK 5.0:
export PATH=/usr/lpp/java/J5.0/bin:$PATH
java -version
java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pmz31dev-20070426 (SR5))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 z/OS s390-31 j9vmmz3123-20070426 (JIT enabled)
J9VM - 20070420_12448_bHdSMr
JIT - 20070419_1806_r8
GC - 200704_19)
JCL - 20070425

SDK 6.0
export PATH=/usr/lpp/java/J6.0/bin:$PATH
java -version
java version "1.6.0"
Java(TM) SE Runtime Environment (build pmz3160sr6-20091029_01(SR6))
IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 z/OS s390-31 jvmmz3160sr6-20091028_45330 (JIT enabled, AOT enabled)
J9VM - 20091028_045330
JIT - r9_20090902_1330ifx1
GC - 20090817_AA)
JCL - 20090924_01

Another aspect to consider is which platforms and SDK levels your partners will
use to read the tapes written from your z/OS system. This specification ensures
that the cryptographic capabilities of the reader are compatible with the SDK level
that you have chosen for your z/OS Security Key Lifecycle Manager for z/OS
deployment.

Copying the unrestricted policy files
You must replace the US_export_policy.jar and local_policy.jar files in the
$JAVA_HOME/lib/security directory with an unrestricted version of these files.
These unrestricted policy files are required by the Security Key Lifecycle Manager
for z/OS in order to serve AES keys.

On z/OS, copy the unrestricted policy files that are shipped in the z/OS Java SDK
build under the jce demo directory. Copy them to the lib/security directory as
shown in this example:
cp /usr/lpp/java/J5.0/demo/jce/policy-files/unrestricted/*
/usr/lpp/java/J5.0/lib/security

Alternatively, the unrestricted policy files can be downloaded from the following
website:https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk.

Be sure to select the unrestricted JCE policy files for the SDK you are currently
using. See https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk for the correct unrestricted policy files.

44 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

Add the Java Hardware Provider (Only if Using ICSF)
If you are not sure what keystore type you want to use, read “Which Keystore is
Right for You” on page 36. If you decided to use a keystore of type JCECCAKS or
JCECCARACFKS to use the security advantages of ICSF, you must add the Java
hardware provider.

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore types
concurrently in the Security Key Lifecycle Manager for z/OS configuration file.
You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

Note: For test purposes, you can use the JCEKS software keystore. This keystore
does not use ICSF and thus does not require you to add the Java hardware
provider at this time.

To add the Java hardware provider, you must edit the $JAVA_HOME/lib/security/
java.security file. You can then add the hardware provider so that it is the second
provider in the list as shown in the examples shown. Be sure to change the
security.provider.# so that the providers are listed in order from 1, 2, 3.

For SDK 5.0 and higher, add the IBMJCECCA provider for best practices:
#
List of providers and their preference orders (see above):
#
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

For more detailed information about the Java hardware provider, see
http://www.ibm.com/servers/eserver/zseries/software/java/jcecca14.html.

Setting up a user ID to run the Security Key Lifecycle Manager for
z/OS

The Security Key Lifecycle Manager for z/OS requires a z/OS user ID that
identifies the Security Key Lifecycle Manager for z/OS process to z/OS. For
production deployments, launch Security Key Lifecycle Manager for z/OS using
the JZOS launcher, see “Setting up and running Security Key Lifecycle Manager for
z/OS in Production Mode” on page 67. In addition, the Security Key Lifecycle
Manager for z/OS must be able to retrieve the private key of your X.509 Digital
Certificate. The private key must be retrieved when servicing Tape Write and Read
requests. For RACF type keystores the user ID under which the Security Key
Lifecycle Manager for z/OS runs must be the owner of the certificate. See z/OS
Security Server Security Administrator's Guide for an explanation of the rules that
govern access to private keys and certificates.

In all the following examples, the user ID of ISKLMSRV is used.

This user ID must have an OMVS segment with a UID and GID defined. The UID
need not be zero and can be any value. The home directory in this user ID's OMVS
segment is where the Security Key Lifecycle Manager for z/OS is started. The user
ID must also run the standard shell at login (/bin/sh), and be connected to a

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 45

http://www.ibm.com/servers/eserver/zseries/software/java/jcecca14.html

default group that has a GID. You can allow RACF to automatically assign the UID
or explicitly define the UID. The ISKLMSRV user ID is a protected user. It cannot
be logged on to.

Note: In OMVS, the configuration file permission is set so that only the owner can
read or write the configuration file. If you log on and you are not the owner of the
configuration file, you do not have permission to write to the configuration file.
You might encounter an error similar to this: - java.io.FileNotFoundException:
/u/isklmsrv/JA0/ISKLMConfig.properties.zos.JCECCARACFKS (EDC5111I
Permission denied.) You might encounter this error when stopping the server,
running the refresh operation, or changing passwords. For best practices, log on
using the user ID with owner permissions.

The use of italics indicates fields that you can customize in this example.
AU ISKLMSRV DFLTGRP(SYS1) OMVS(AUTOUID HOME(/u/ISKLMSRV)PROGRAM(/bin/sh))

NOPASSWORD NOOIDCARD

Obtaining Digital Certificates
Before starting your Security Key Lifecycle Manager for z/OS, you must have at
least one X.509 digital certificate (contains a public and private key pair). The
digital certificate is to protect the data encryption key that the Security Key
Lifecycle Manager for z/OS creates when encrypting data to tape. The use of
certificates, their public key, and the corresponding private key is explained in
“Importance of keys and certificates” on page 26. The Security Key Lifecycle
Manager for z/OS allows for two digital certificate aliases to be defined per write
request. One of the two aliases/labels specified must have a private key in the
keystore of Security Key Lifecycle Manager for z/OS when the tape is created. This
guarantees that the creator of the tape can read the tape. The other label/alias can
be a public key from a business partner which they can decrypt with their private
key. In order to read an encrypted tape, the correct private key is needed.

There are two methods of setting up digital certificates:
v Creating your own public and private key pair and corresponding certificate.

Those keys and certificates are used to write/encrypt to tape so that you can
read/decrypt the tape at a later date.

v Obtaining the public key of a business partner and corresponding certificate.
Those keys and certificates are used to write/encrypt tapes that can be
read/decrypted by your business partner.

Note: The Security Key Lifecycle Manager for z/OS does not read certificates with
NO-TRUST status. To verify the status with RACF, issue a RACDCERT LIST
command to display the certificate. This pertains to ACF2 and other security
products as well. This is only applicable to JCERACFKS and JCECCARACFKS.

Creating Your Own Public and Private Key Pair and
Corresponding Certificate

There are several ways to setup your own public and private key pair for use by
the Security Key Lifecycle Manager for z/OS:

Using Certificates You Already Have
You might already have certificates and their associated public and private keys
that are suitable for using with Security Key Lifecycle Manager for z/OS. These
certificates can be used as long as they are one of the following:

46 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

v Existing certificate and corresponding public and private keys that can be
exported and then imported into Java JCEKS or JCECCAKS keystore. A second
copy of the key would then exist in a keystore file or PKDS.

v Existing RACF keys that are connected to RACF key rings so they can be
accessed by the Security Key Lifecycle Manager for z/OS.

Note: Keys with no corresponding X.509 certificate cannot be used with the
Security Key Lifecycle Manager for z/OS. For example, an ICSF public and private
key that was created using ICSF tools does not have a corresponding certificate.

Generating a new public and private key pair and
corresponding certificate

You can generate a new public and private key pair and corresponding certificate
to be used exclusively for processing and protecting your data on tape. It can be a
self-signed certificate, a certificate signed using an internal z/OS Certificate
Authority. It can also be a certificate signed by a third-party Certificate Authority
such as VeriSign.

There are several tools you can use to create the public and private key pair and
certificate. The examples in this publication illustrate how to create keys using:
v Java keytool (using software encryption)
v hwkeytool (using z/OS cryptography provided by ICSF)
v RACF's RACDCERT command (usings RACF and, optionally, ICSF)

Note: You can also use an equivalent z/OS security product other than the IBM
z/OS Security Server RACF product. If you do, consult the publications associated
with that product. Find the functionally equivalent operations and steps with
respect to the RACF RACDCERT commands shown in the following examples.

Obtaining a public key and corresponding certificate from a
business partner

You can exchange encrypted tapes with a business partner. To write encrypted
tapes to be sent to a business partner, you must import a public key/certificate
from your business partner. They can then read the encrypted tape with their
corresponding private key. The reverse is also true. For a business partner to create
encrypted tapes that you can read, you must export a public key/certificate from
one of your public and private key pairs. You can then read the encrypted tape
with your private key. The following examples illustrate how you would export
and import a public key/certificate using the various tools (Java keytool, java
hwkeytool and RACF's RACDCERT).

Examples of How to Set Up Digital Certificates
The examples show how you can use the Java tools (automatically available to you
in the Java installation) and the RACF RACDCERT command. The examples show
you how to set up digital certificates for use by Security Key Lifecycle Manager for
z/OS. They are organized by the keystore type you select to start the Security Key
Lifecycle Manager for z/OS. For more information see “Which Keystore is Right
for You” on page 36).
v “Example 1: Using the Java Keytool and JCEKS on z/OS” on page 48 (software

keys)
v “Example 2: Using the JCECCAKS Keystore with the Java Hwkeytool on z/OS”

on page 50 (ICSF keys not using RACF)

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 47

v “Example 3: Using the JCERACFKS or JCECCARACFKS Keystore on z/OS” on
page 53 (RACF keys which are not in ICSF)

Example 1: Using the Java Keytool and JCEKS on z/OS
The JCEKS keystore is a file-based keystore. If you use this keystore it is relatively
easy to copy the contents of this keystore. Copy the keystore for back up and
recovery, and keep two Security Key Lifecycle Manager for z/OS instances
synchronized for failover. JCEKS provides password-based protection of the
contents of the keystore and provides relatively good performance. The keystore is
protected by the z/OS file system and z/OS security product. The Java keytool
provides management of the JCEKS-based keystore and its contents. You can
manage the private keys and their associated X.509 certificates, and the certificate
chains that authenticate the authenticity of a certificate. For more information
about the Java keytool, see “Managing Keystores on System z Platforms” on page
38.

Verify Java is in Your Path

To use the keytool command, make sure that Java is in your path. See “Verify the
Java Version” on page 44.

Generate a Public and Private Key and Corresponding Certificate for
Your Security Key Lifecycle Manager for z/OS

This example generates a public and private key pair and associated self-signed
certificate, which is stored in a keystore. The resulting keystore can be used by
your Security Key Lifecycle Manager for z/OS to Write and Read encrypted tapes.
You can use this key to define a default alias in your ISKLMConfig.properties.zos
file (drive.default.alias1 = CERT1).

Alternately, a certificate request can be generated and submitted to a third-party
certificate authority (or internal z/OS certificate authority). The fulfilled certificate
and the certificate authority certificate can be imported back into a JCEKS keystore
for use by the Security Key Lifecycle Manager for z/OS.

For information about using the Java keytool to generate a certificate request and
import the results back onto your JCEKS keystore, see this website publication:
https://www.ibm.com/developerworks/java/jdk/security/50/secguides/
keytoolDocs/KeyToolUserGuide-150.html.

For information about how to use SSL to create an internal z/OS Certificate
Authority see, z/OS Cryptographic Services System Secure Sockets Layer Programming
SC24-5901.

Generate an RSA private and public key pair and associated certificate. The
keypass and storepass values must be the same. This is because the Security Key
Lifecycle Manager for z/OS allows you to specify only one password to the
keystore (in the ISKLMConfig.properties.zos "config.keystore.password ="). It does
not provide a way to send a specific password in with each keylabel.

In this example:
v Key alias is CERT1.
v Distinguished name of the subject is myCo.
v Keystore file name is ISKLMKeystore.
v Password used to protect this keystore is 'somesecretphrase'.

48 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

 https://www.ibm.com/developerworks/java/jdk/security/50/secguides/keytoolDocs/KeyToolUserGuide-150.html
 https://www.ibm.com/developerworks/java/jdk/security/50/secguides/keytoolDocs/KeyToolUserGuide-150.html

v Expiration of the certificate is 999 days.
v Key size generated is 2048 bits in length.

Type this command:
keytool -genkey -alias CERT1 -dname "CN=myCo"
-keystore ISKLMKeystore -provider IBMJCE -keyalg RSA -keysize 2048
-keypass "somesecretphrase" -storepass "somesecretphrase"
-storetype JCEKS -validity 999

To list the contents of the keystore where the certificate was created, type this
command:
keytool -list -keystore ISKLMKeystore -storetype JCEKS
-storepass “somesecretphrase”

Exchange a Public Key or Certificate with a Business Partner

For example, you can export the CERT1 self-signed certificate and public key to a
business partner, so that the business partner can write encrypted tapes that can be
read by your Security Key Lifecycle Manager for z/OS. In this example, you send
the public key and corresponding certificate (alias/label CERT1) that was created
in the previous example for use by your Security Key Lifecycle Manager for z/OS.
You send only the public key (not the private key) so that there is no security
compromise.

Export the self-signed certificate & public key “CERT1” to a file called
ExportedPublicKey.cer.
keytool -export -file ExportedPublicKey.cer -keystore ISKLMKeystore
-alias CERT1 -storepass “somesecretphrase” -storetype JCEKS
-provider IBMJCE

Print the newly created certificate file using the keytool printcert utility.
keytool -printcert -file ExportedPublicKey.cer

Now you can send the ExportedPublicKey.cer file to your business partner. Tell
them the alias “CERT1” if they are not able to use an encoding mechanism of
Public Key Hash, explained in more detail in this topic.

Import the certificate and public key from your business partner.

Note: The alias you specify on import must match the alias that was used by the
business partner (in this example, CERT1). This case is true if you plan to specify
an encoding mechanism of Label “L” when encrypting tapes. Optionally, you can
specify an encoding mechanism of Public Key Hash “H” that will use a Hash
value rather than the KeyLabel to identify the key. While Hash gives slightly less
performance, it allows you to import a certificate/public key from a business
partner. It does so without knowing the alias/KeyLabel the business partner used
to create/export the key. It also gives you the freedom to specify the label you
want to use to identify the public key of your business partner. Therefore using
Public Key Hash would be the preferred method. An example of how the z/OS
encoding mechanism is provided in this section.

Import the certificate and public key from the business partner contained in
ExportedPublicKey.cer to the ISKLMKeystore with an alias KEYS1. In this example
the imported alias of KEYS1 does not match the original business partner's alias of
CERT1. This only works if you plan to specify an encoding mechanism of Public

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 49

Key Hash “H” for this key. This is shown in the example following this import
example. Otherwise the alias on the import command must be provided to you by
your business partner.
keytool -import -file ExportedPublicKey.cer -keystore ISKLMKeystore
-alias KEYS1 -storepass “somesecretphrase”
-storetype JCEKS -provider IBMJCE -keypass “somesecretphrase”

List the contents of the keystore the certificate was imported to:
keytool -list -keystore ISKLMKeystore -storetype JCEKS -storepass “somesecretphrase”

The encoding key mechanism can be specified in the data class or JCL. The
example shows how it would be specified in the JCL. As shown in this example, it
is best that you specify an encoding mechanism of Label “L” when defining your
own Key. However, you should specify an encoding mechanism of Public Key
Hash “H” when defining a business partner key.
//C02STRW1 JOB CONSOLE,
// MSGCLASS=H,MSGLEVEL=(1,1),CLASS=B,
// TIME=1440,REGION=2M
/*JOBPARM SYSAFF=*
//*
//* ENC KEY MASTER JOB
//*
//CREATE1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//SEQ001 DD DSN=TAPE.C02M5CX2.PC5.NOPOOL.C02STRS1.MASTER,
// KEYLABL1=’CERT1’,
// KEYENCD1=L,
// KEYLABL2=’KEYS1’,
// KEYENCD2=H,
// LABEL=(1,SL),UNIT=C02M5CX2,DISP=(,CATLG),
// DCB=(DSORG=PS,RECFM=FB,LRECL=2048,BLKSIZE=6144)
//SYSIN DD *
DSD OUTPUT=(SEQ001)
FD NAME=A,STARTLOC=1,LENGTH=10,FORMAT=ZD,INDEX=1
FD NAME=B,STARTLOC=11,LENGTH=13,PICTURE=13,’PRIMER RECORD’
CREATE QUANTITY=25,FILL=’Z’,NAME=(A,B)
END
/*

For more information about the Hash encoding mechanism, see z/OS DFSMS
Software Support for IBM System Storage TS1130 and TS1120 Tape Drives (3592),
SC26-7514.

Example 2: Using the JCECCAKS Keystore with the Java
Hwkeytool on z/OS
If you use the JCECCAKS keystore, you can take advantage of ICSF Security,
which is supported only on the z/OS platform. This keystore is a file-based
keystore. The certificate and public key are stored in a file. The private key can be
stored in ICSF depending on the option specified when the key is created or
imported. For information about ICSF back up and recovery and Master Key
management see, z/OS Cryptographic Services Integrated Cryptographic Service Facility
System Programmer's Guide, and z/OS Cryptographic Services Integrated Cryptographic
Service Facility Administrator's Guide.

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore types
concurrently in the Security Key Lifecycle Manager for z/OS configuration file.
You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

50 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

The Java hwkeytool provides management of the JCECCAKS-based keystore. For
more information about the Java hwkeytool, see “Managing Keystores on System z
Platforms” on page 38.

Verify Java is in Your Path

To use the keytool command, make sure that Java is in your path. See “Verify the
Java Version” on page 44.

ICSF Must be Started

The ICSF address space must be started for the key generation to be successful.

Generate a Public and Private Key and Corresponding Certificate for
Your Security Key Lifecycle Manager for z/OS

This example generates a public and private key pair and associated self-signed
certificate where the private key is stored in the ICSF PKDS. The resulting keystore
can be used by your Security Key Lifecycle Manager for z/OS to Write and Read
encrypted tapes. You can use this key to define a default alias in your config file
(that is, drive.default.alias1 = CERT2).

Alternately, a certificate request can be generated and submitted to a third-party
certificate authority (or internal z/OS certificate authority). The fulfilled certificate
and the certificate authority certificate can be imported back into a JCECCAKS
keystore for use by the Security Key Lifecycle Manager for z/OS.

For information about using the Java keytool, see http://www-128.ibm.com/
developerworks/java/jdk/security/142/secguides/keytoolDocs/
KeyToolUserGuide-142.html#certreqCmd.

For information about how to use SSL to create an internal z/OS Certificate
Authority see z/OS Cryptographic Services System Secure Sockets Layer Programming
SC24-5901.

Generate an RSA private/public key pair and associated certificate where the
private key is stored in the ICSF PKDS by specifying the –hardwaretype PKDS
option. The default –hardwaretype (when no option is specified) is CLEAR. It does
not store the private key in the ICSF PKDS but rather in the Java keystore file
where the public key and certificate are being stored (in this example,
ISKLMKeystoreCCA). The keypass and storepass values must be the same. This is
because the Security Key Lifecycle Manager for z/OS allows you to specify only
one password to the keystore (in the ISKLMConfig.properties.zos
"config.keystore.password ="). It does not provide a way to send a specific
password in with each keylabel. In this example, the key alias is CERT2, the
distinguished name of the subject is myCo, the keystore file name is
ISKLMKeystoreCCA. The password used to protect this keystore is
'somesecretphrase' and the expiration of the certificate is 999 days. The key size
generated is 2048 bits in length.
hwkeytool -genkey -alias CERT2 -dname "CN=myCo"
-keystore ISKLMKeystoreCCA -provider IBMJCECCA -keyalg RSA
-keysize 2048 -storetype JCECCAKS -keypass "somesecretphrase"
-storepass "somesecretphrase" -hardwaretype PKDS

List the contents of the keystore where the certificate was created.

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 51

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/keytoolDocs/KeyToolUserGuide-142.html#certreqCmd
http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/keytoolDocs/KeyToolUserGuide-142.html#certreqCmd
http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/keytoolDocs/KeyToolUserGuide-142.html#certreqCmd

hwkeytool -list -keystore ISKLMKeystoreCCA -storepass “somesecretphrase"
-storetype JCECCAKS -provider IBMJCECCA

Note: Specify the Correct provider and storetype for your Java SDK.

You may modify the hwkeytool commands in the example. For best practices, use
–provider IBMJCECCA and –storetype JCECCAKS when using Java SDK 5.0 and
higher.

Exchange a Public Key or Certificate with a Business Partner

The example shows how to export a certificate and public key to a business
partner. It also shows how the business partner can import it so that the business
partner can write encrypted tapes that can be read by your Security Key Lifecycle
Manager for z/OS. In this example the public key and corresponding certificate
(alias/label CERT2) that was created in the previous example are sent for use by
your Security Key Lifecycle Manager for z/OS. Only send the public key (not the
private key) so there is no security compromise.

Export the self-signed certificate & public key “CERT2” to a file called
ExportedPublicKey.cer.
hwkeytool -export -file ExportedPublicKey.cer -keystore ISKLMKeystoreCCA
-alias CERT2 -storepass “somesecretphrase”
-storetype JCECCAKS -provider IBMJCECCA

Print the newly created certificate file using the hwkeytool printcert utility.
hwkeytool -printcert -file ExportedPublicKey.cer

Now you can send the ExportedPublicKey.cer file to your business partner. You
might also tell them the alias “CERT2” if they are not able to use an encoding
mechanism of Public Key Hash. This concept is explained in more detail in this
topic.

Import the certificate and public key from your business partner:

Note: The alias you specify on import must match the alias that was used by the
business partner (in this example, CERT2). This is true if you plan to specify an
encoding mechanism of Label “L” when encrypting tapes. Optionally, you can
specify an encoding mechanism of Public Key Hash “H” that will use a Hash
value rather than the KeyLabel to identify the key. While Hash gives slightly less
performance, it allows you to import a certificate/public key from a business
partner. It does so without knowing the alias/KeyLabel the business partner used
to create/export the key. It also gives you the freedom specify the label you want
to use to identify the public key of your business partner. Therefore using Public
Key Hash would be the preferred method. An example of how the z/OS encoding
mechanism is specified is provided in this section.

Import the certificate and public key from the business partner contained in
ExportedPublicKey.cer to the ISKLMKeystoreCCA with an alias KEYS2. In this
example the imported alias of KEYS2 does not match the original business
partner's alias of CERT2. This only works if you plan to specify an encoding
mechanism of Public Key Hash “H” for this key. This is shown in the example
following this import example. Otherwise the alias on the import command must
be provided to you by your business partner.

52 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

hwkeytool -import -file ExportedPublicKey.cer -keystore ISKLMKeystoreCCA
-alias KEYS2 -storepass “somesecretphrase”
-storetype JCECCAKS -provider IBMJCECCA -keypass “somesecretphrase”

List the contents of the keystore the certificate was imported to:
hwkeytool -list -keystore ISKLMKeystoreCCA -storetype JCECCAKS
-storepass “somesecretphrase”

The encoding key mechanism can be specified in the data class or JCL. The
example shows how it would be specified in the JCL. As is shown in this example,
it is best that you specify an encoding mechanism of Label “L” when defining
your own Key. However, you should specify an encoding mechanism of Public
Key Hash “H” when defining a business partner key.
//C02STRW1 JOB CONSOLE,
// MSGCLASS=H,MSGLEVEL=(1,1),CLASS=B,
// TIME=1440,REGION=2M
/*JOBPARM SYSAFF=*
//*
//* ENC KEY MASTER JOB
//*
//CREATE1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//SEQ001 DD DSN=TAPE.C02M5CX2.PC5.NOPOOL.C02STRS1.MASTER,
// KEYLABL1=’CERT2’,
// KEYENCD1=L,
// KEYLABL2=’KEYS2’,
// KEYENCD2=H,
// LABEL=(1,SL),UNIT=C02M5CX2,DISP=(,CATLG),
// DCB=(DSORG=PS,RECFM=FB,LRECL=2048,BLKSIZE=6144)
//SYSIN DD *
DSD OUTPUT=(SEQ001)
FD NAME=A,STARTLOC=1,LENGTH=10,FORMAT=ZD,INDEX=1
FD NAME=B,STARTLOC=11,LENGTH=13,PICTURE=13,’PRIMER RECORD’
CREATE QUANTITY=25,FILL=’Z’,NAME=(A,B)
END
/*

For more information about the Hash encoding mechanism, see z/OS DFSMS
Software Support for IBM System Storage TS1130 and TS1120 Tape Drives (3592),
SC26-7514 publication.

Example 3: Using the JCERACFKS or JCECCARACFKS Keystore
on z/OS
If you use the JCERACFKS or JCECCARACFKS keystore you can take advantage
of RACF or both RACF and ICSF Security. They are supported only on the z/OS
platform. This is a keyring-based keystore. The certificate and public and private
key pair are stored in RACF. The public and private key pair can optionally be
stored in ICSF depending on the option specified when the key is created or
imported.

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore types
concurrently in the Security Key Lifecycle Manager for z/OS configuration file.
You must specify only one of these types in the configuration file. If the
JCERACFKS and JCECCARACFKS keystore types are used concurrently, the
Security Key Lifecycle Manager for z/OS server will not start.

The JCERACFKS uses SAF and RACF services to protect key material and
certificates. The JCECCARACFKS keystore uses SAF and RACF services with the
addition of ICSF to protect certificates and key material. For SAF/RACF-stored key
rings, the RACF RACDCERT command is the interface used to manage the

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 53

keyring. The RACDCERT command is documented in the z/OS Security Server
RACF Command Language Reference publication for more information,
seehttp://publibz.boulder.ibm.com/epubs/pdf/ichza460.pdf.

For information about ICSF back up and recovery and Master Key management,
see:
v z/OS Cryptographic Services Integrated Cryptographic Service Facility System

Programmer's Guide

v z/OS Cryptographic Services Integrated Cryptographic Service Facility Administrator's
Guide

The examples illustrate several ways to generate a public and private key pair and
associated certificate where the public and private key pair is stored in the ICSF
PKDS. The resulting certificate is then connected to a keyring which can be used
by the Security Key Lifecycle Manager for z/OS to Write and Read encrypted
tapes. This example also shows how to export the certificate and public key and
import them so that they can be used by a business partner. The business partner
can use it to write encrypted tapes that can be read by your Security Key Lifecycle
Manager for z/OS.

Define a Keyring

You must define a keyring for the Security Key Lifecycle Manager for z/OS Server
user ID on z/OS when using the JCERACFKS or JCECCARACFKS keystore types.
Use the zOS RACF RACDCERT command as shown in the example. RACDCERT
creates the keyring with the name of ISKLMRing for the user ID ISKLMSRV.

It is assumed that this command is being issued by an administrator who has
authority to issue the RACDCERT command. See z/OS Security Server RACF
Command Language Reference for additional information and a detailed explanation
of the RACDCERT command and parameters. If you are using another z/OS
security product, you must perform this task using the tooling that is appropriate
for that security product.
RACDCERT ID(ISKLMSRV) ADDRING(ISKLMRing)

Ensure that the Security Key Lifecycle Manager for z/OS server is authorized to
read from its keyring, and is authorized to use the key ICSF key label. Verify that
the required RACF FACILITY class profiles are defined. If it is not defined issue
the RDEFINE commands as shown to define these profiles which protect the use
of keyring functions:
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(ISKLMSRV) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(ISKLMSRV) ACC(READ)

Generate a Certificate/RSA Key Pair

This example generates an RSA key pair and self-signed certificate. It then stores
the RSA keys in the ICSF PKDS. The ICSF address space must be started for the
key generation to be successful. The PCICC parameter of the RACDCERT
GENCERT command indicates to RACF that the cryptographic hardware is to be
used in the creation of the key pair. The SIZE indicates the modulus to be used in
the creation of key pairs. The key label for the PKDS that is specified on the
PCICC parameter must follow the z/OS data set naming conventions.

54 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://publibz.boulder.ibm.com/epubs/pdf/ichza460.pdf

Note: The use of ICSF is optional. If you choose not to use ICSF, the key that you
generate is saved in the RACF database and limited in strength to 1024 bits. This
setting can be used in a testing environment.

You can use the self-signed certificate as is. You can then have it signed by a
self-signed certificate authority certificate within RACF. You can optionally choose
to export a certificate request and submit to a third-party certificate authority if
your installation uses a third-party certificate authority. All three cases are
illustrated in the examples in this section.

Use the RACDCERT GENCERT command to generate the RSA public and private
key pair and create a self-signed certificate. In this example, the Security Key
Lifecycle Manager for z/OS instance on z/OS will be executing with a z/OS user
ID of ISKLMSRV. The subject distinguished name in the certificate that identifies
this Security Key Lifecycle Manager for z/OS instance has a common name of
ITOperations, for the company MyCo, in the United States. The certificate has a
label associated with it of ISKLMServer to easily identity the certificate.

The RACDCERT GENCERT command has two possible keywords, PCICC (used
in the following examples) and ICSF. Both stores the private key in the PKDS of
ICSF with the following differences:

PCICC keyword
ICSF subsystem must be operational and configured for PKA operations.

A PCI-class cryptographic coprocessor must be operational.

The private key generated with RSA algorithm and stored as an ICSF RSA
Chinese Remainder Theorem (CRT) key token in the PKDS.

ICSF keyword
ICSF subsystem must be operational and configured for PKA operations.

The private key is generated with RSA algorithm and stored as an ICSF RSA
Modulus-Exponent (ME) key token in the PKDS.

For additional information see the RACF and ICSF documentation mentioned
earlier in this document.
1. Generating a self-signed certificate

a. Generate an RSA key pair and certificate for the Security Key Lifecycle
Manager for z/OS server instance on z/OS. The following RACDCERT
command illustrates that the certificate generated uses ICSF for private key
storage. The key size is 2048 bits and the private key is saved in the ICSF
PKDS in an encrypted form.
RACDCERT GENCERT SUBJECTSDN(CN(’ITOperations’)
O(’MyCo’) C(’US’)) WITHLABEL(’ISKLMServer’)
PCICC(ITOPS.ISKLM.CERT) SIZE(2048)

If you are not using ICSF omit the PCICC keyword and change the keysize
to 1024.

Note: This certificate can be used as is as a self-signed certificate or
submitted to a third-party certificate provider for signing. See item 3 on
page 57 for information about submitting to a third-party certificate
provider.

b. You can send this certificate to other business partners or sites within your
enterprise. This is so that the certificate that identifies the Security Key
Lifecycle Manager for z/OS instance on z/OS is known to your partners.

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 55

By using this self-signed certificate, your business partners or remote sites
agree to trust this certificate. This certificate can be imported into the
keystore that is being used by the Security Key Lifecycle Manager for z/OS
at your location of your partner. To send this certificate, you must export it
to a dataset
RACDCERT EXPORT (LABEL(’ISKLMServer’))
DSN(’hlq.PUBKEY.S2048.ITOPS’) FORMAT(CERTDER)

See “Business Partner and Remote z/OS Systems ” on page 58 for
information.

c. You must ensure that the Security Key Lifecycle Manager for z/OS Server
certificate is connected to the Security Key Lifecycle Manager for z/OS's
keyring. This example shows connecting the certificate that identifies the
Security Key Lifecycle Manager for z/OS server to the Security Key
Lifecycle Manager for z/OS keyring. Modify these command examples to
suit your needs.
RACDCERT ID(ISKLMSRV) CONNECT(LABEL(’ISKLMServer’)RING(ISKLMRing))

d. If you are using ICSF, ensure that the Security Key Lifecycle Manager for
z/OS Server instance has RACF authority to the key label of the private key
stored in the ICSF PKDS. Also be sure to refresh the in-storage copies of the
CSFKEYS Class profiles:
RDEFINE CSFKEYS ITOPS.ISKLM.CERT UACC(NONE)
PERMIT ITOPS.ISKLM.CERT CLASS(CSFKEYS) ID(ISKLMSRV) ACCESS(READ)
SETROPTS RACLIST(CSFKEYS) GENERIC(CSFKEYS) REFRESH

2. Generating a certificate signed by an Internal Certificate Authority

a. Generate a self-signed certificate authority certificate.
RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN(’MyLocalzOSCA’)O(’MyCo’)C(’US’))
WITHLABEL(’LocalRACF CA’) PCICC(LOCAL.RACF.CERTAUTH) SIZE(2048)

If you are not using ICSF omit the PCICC keyword and change the keysize
to 1024.

b. Generate an RSA key pair and certificate for the Security Key Lifecycle
Manager for z/OS server instance on z/OS. The RACDCERT command
illustrates that the certificate generated uses ICSF for private key storage. It
is signed with the local certificate authority certificate generated in step 1.
RACDCERT ID(ISKLMSRV) GENCERT SUBJECTSDN(CN(’ITOperations’)
O(’MyCo’) C(’US’)) WITHLABEL(’ISKLMServer’) PCICC(ITOPS.ISKLM.CERT)
SIZE(2048) SIGNWITH(CERTAUTH LABEL(’LocalRACF CA’))

If you are not using ICSF omit the PCICC keyword and change the keysize
to 1024.

c. You can send this certificate to other business partners or sites within your
enterprise. This is so that the certificate that identifies the Security Key
Lifecycle Manager for z/OS instance on z/OS is known to your partners.
Validate with your business partners or remote sites that you trust a
common certificate authority (CA) whether third party or self signed. This
depends on your business and security practices. This certificate can be
imported into the keystore that is being used by the Security Key Lifecycle
Manager for z/OS at the location of your partner. To send this certificate,
you must export it to a dataset.
RACDCERT EXPORT (LABEL(’ISKLMServer’)) DSN(’hlq.PUBKEY.S2048.ITOPS’)
FORMAT(CERTDER)

See “Business Partner and Remote z/OS Systems ” on page 58 for
information.

56 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

d. Ensure that the Security Key Lifecycle Manager for z/OS Server certificate
and its designated certificate authority certificate are connected to the key
ring of the Security Key Lifecycle Manager for z/OS. These examples show
connecting a certificate authority certificate. It also shows connecting the
certificate that identifies the Security Key Lifecycle Manager for z/OS server
to the Security Key Lifecycle Manager for z/OS keyring. Modify these
command examples to suit your needs.
RACDCERT ID(ISKLMSRV) CONNECT(CERTAUTH LABEL(’LocalRACF CA’) RING(ISKLMRing))
RACDCERT ID(ISKLMSRV) CONNECT(LABEL(’ISKLMServer’)RING(ISKLMRing))

e. If you are using ICSF, ensure that the Security Key Lifecycle Manager for
z/OS Server instance has RACF authority to the key label of the private key
stored in the ICSF PKDS. Also be sure to refresh the in-storage copies of the
CSFKEYS Class profiles:
RDEFINE CSFKEYS ITOPS.ISKLM.CERT UACC(NONE)
PERMIT ITOPS.ISKLM.CERT CLASS(CSFKEYS) ID(ISKLMSRV) ACCESS(READ)
SETROPTS RACLIST(CSFKEYS) GENERIC(CSFKEYS) REFRESH

3. Generating a certificate signed by a third-party certificate authority

a. Generate an RSA key pair for the Security Key Lifecycle Manager for z/OS
server instance on z/OS. The following RACDCERT command illustrates
that the certificate generated uses ICSF for private key storage.
RACDCERT ID(ISKLMSRV) GENCERT SUBJECTSDN(CN(’ITOperations’)
O(’MyCo’) C(’US’)) WITHLABEL(’ISKLMServer’) PCICC(ITOPS.ISKLM.CERT) SIZE(2048)

If you are not using ICSF omit the PCICC keyword and change the keysize
to 1024. The certificate can be submitted to a third-party certificate provider
for signing.

b. Generate and save a certificate request to a dataset
(hlq.PUBKEY.REQUEST.ITOPS)
RACDCERT GENREQ (LABEL('ISKLMServer’)) DSN('hlq.PUBKEY.S2048.ITOPS’)

c. Submit certificate request, hlq.PUBKEY.S2048.ITOPS to your certificate
provider. The response you receive is an X.509 certificate. This example
assumes that the certificate you receive from your third-party certificate
authority is saved in the dataset 'hlq.THIRD.PARTY.CERT' on z/OS. The
contents of this dataset is imported into RACF. This dataset contains only
the signed certificate that identifies the Security Key Lifecycle Manager for
z/OS instance running on z/OS. It can also contain the certificate authority
certificate. The private key for the Security Key Lifecycle Manager for z/OS
certificate remains protected by either ICSF in the PKDS or RACF.

d. Receive the response into dataset 'hlq.THIRD.PARTY.CERT'.
e. Add the certificate to RACF.

RACDCERT ADD(’hlq.THIRD.PARTY.CERT’) TRUST
WITHLABEL(’ISKLMServer’) ID(ISKLMSRV)

If the CA certificate is not contained in the dataset ‘hlq.THIRD.PARTY.CERT'
you need to acquire the CA certificate that signed the Security Key Lifecycle
Manager for z/OS certificate from the External certificate authority. You
must then add it to RACF as a CERTAUTH.

f. You can send this certificate to other business partners or sites within your
enterprise. This is so that the certificate that identifies the Security Key
Lifecycle Manager for z/OS instance on z/OS is known to your partners.
Validate with your business partners or remote sites that you trust a
common certificate authority (CA) whether third-party or self signed. This
depends on your business and security practices. This certificate can be

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 57

imported into the keystore that is being used by the Security Key Lifecycle
Manager for z/OS at the location of your partner. To send this certificate,
you must export it to a dataset
RACDCERT EXPORT (LABEL(’ISKLMServer’))
DSN(’hlq.PUBKEY.S2048.ITOPS’) FORMAT(CERTDER)

See “Business Partner and Remote z/OS Systems ” for information.
g. Ensure that the Security Key Lifecycle Manager for z/OS Server certificate

and its designated certificate authority certificate are connected to the key
ring of the Security Key Lifecycle Manager for z/OS. These examples show
connecting a certificate authority certificate. It also shows connecting the
certificate that identifies the Security Key Lifecycle Manager for z/OS server
to the Security Key Lifecycle Manager for z/OS keyring. Modify these
command examples to suit your needs.
RACDCERT ID(ISKLMSRV) CONNECT(CERTAUTH LABEL(’External CA label’) RING(ISKLMRing))

RACDCERT ID(ISKLMSRV) CONNECT(LABEL(’ISKLMServer’)RING(ISKLMRing))

See “Business Partner and Remote z/OS Systems ” for information.
h. If you are using ICSF, ensure that the Security Key Lifecycle Manager for

z/OS Server instance has RACF authority to the key label of the private key
stored in the ICSF PKDS. Also be sure to refresh the in-storage copies of the
CSFKEYS Class profiles:
RDEFINE CSFKEYS ITOPS.ISKLM.CERT UACC(NONE)
PERMIT ITOPS.ISKLM.CERT CLASS(CSFKEYS) ID(ISKLMSRV) ACCESS(READ)
SETROPTS RACLIST(CSFKEYS) GENERIC(CSFKEYS) REFRESH

Business Partner and Remote z/OS Systems

Another z/OS business partner, for example, or perhaps a remote z/OS site within
your business would import the certificate into a z/OS dataset. They then use the
RACDCERT to add that certificate to RACF. The public key in the certificate can
also be saved in the ICSF PKDS depending on the operands supplied to the
RACDCERT command.

Note: The KeyLabel you specify on the WITHLABEL option of the RACDCERT
ADD command must match the KeyLabel that was used when the certificate was
created. This only works if you plan to specify an encoding mechanism of Label
“L” when encrypting tapes. Optionally, you can specify an encoding mechanism of
Public Key Hash “H”, which uses a Hash value rather than the KeyLabel to
identify the key. While Hash gives slightly less performance, it allows you to
import a certificate/public key without knowing the KeyLabel that was used to
create/export the key. It also gives you the freedom to specify the KeyLabel you
want to use to identify the public key of your business partner. Therefore using the
Public Key Hash would be the preferred method. An example of how the z/OS
encoding mechanism is specified in this section.

The following RADCERT ADD command imports the certificate and public key
from the business partner contained in the 'dataset_containing_the_cert_received'
with an alias CompanyXISKLMServer. In this example the imported alias of
CompanyXISKLMServer does not match the original business partner's alias of
ISKLMServer. This only works if you plan to specify an encoding mechanism of
Public Key Hash “H” for this key as shown in the example. Otherwise the alias on
the import command must be provided to you by your business partner.
RACDCERT ID(ISKLMSRV) ADD(’dataset_containing_the_cert_received’)
TRUST WITHLABEL(’CompanyXISKLMServer’) PCICC(companyX.ISKLMSRV.cert)

58 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

If you are not using ICSF omit the PCICC keyword and change the keysize to
1024.

The WITHLABEL keyword associates a string or friendly name for the certificate
being imported. This name is used by Security Key Lifecycle Manager for z/OS
when accessing the certificate. See the z/OS Security Server RACF Command
Language Reference for detailed discussion of the RACDCERT command.

On z/OS the encoding key mechanism can be specified in the data class or JCL.
This is an example of how it would be specified in the JCL. It is best that you
specify an encoding mechanism of Label “L” when defining your own Key. You
must specify an encoding mechanism of Public Key Hash “H” when defining a
business partner key.
//C02STRW1 JOB CONSOLE,
// MSGCLASS=H,MSGLEVEL=(1,1),CLASS=B,
// TIME=1440,REGION=2M
/*JOBPARM SYSAFF=*
//*
//* ENC KEY MASTER JOB
//*
//CREATE1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//SEQ001 DD DSN=TAPE.C02M5CX2.PC5.NOPOOL.C02STRS1.MASTER,
// KEYLABL1=’ISKLMServer’,
// KEYENCD1=L,
// KEYLABL2=’CompanyXISKLMServer’,
// KEYENCD2=H,
// LABEL=(1,SL),UNIT=C02M5CX2,DISP=(,CATLG),
// DCB=(DSORG=PS,RECFM=FB,LRECL=2048,BLKSIZE=6144)
//SYSIN DD *
DSD OUTPUT=(SEQ001)
FD NAME=A,STARTLOC=1,LENGTH=10,FORMAT=ZD,INDEX=1
FD NAME=B,STARTLOC=11,LENGTH=13,PICTURE=13,’PRIMER RECORD’
CREATE QUANTITY=25,FILL=’Z’,NAME=(A,B)
END
/*

For more information about the Hash encoding mechanism, see z/OS DFSMS
Software Support for IBM System Storage TS1130 and TS1120 Tape Drive (3592),
SC26-7514.

You must ensure that this certificate is connected (or associated) with the keyring
of the Security Key Lifecycle Manager for z/OS server. Use the RACDCERT
command as shown in the example. This example assumes that the Security Key
Lifecycle Manager for z/OS keyring on this z/OS system is ISKLMRing. It also
assumes that the z/OS user ID associated with the Security Key Lifecycle Manager
for z/OS process is ISKLMSRV.

Note: As this certificate contains only a public key, it is important that the
USAGE(CERTAUTH) option is used. If it is not specified, the Security Key
Lifecycle Manager for z/OS does not start. This is because it believes that the
certificate that was added must also contain a private key.
RACDCERT ID(ISKLMSRV) CONNECT(LABEL(’CompanyXISKLMServer’)
RING(ISKLMRing) USAGE(CERTAUTH))

RACDCERT ID(ISKLMSRV) CONNECT(CERTAUTH LABEL(’GENERATED CA Label FROM ADD’)
RING(ISKLMRing))

On this remote z/OS system, ensure that the Security Key Lifecycle Manager for
z/OS server is authorized to read from its keyring. It must also be authorized to
use the key ICSF key label. Ensure that the required RACF FACILITY class profiles
are defined. If not, issue the RDEFINE commands to define these profiles which
protect the use of keyring functions:

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 59

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(ISKLMSRV) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(ISKLMSRV) ACC(READ)

If using ICSF, ensure that the Security Key Lifecycle Manager for z/OS Server
instance has RACF authority to the key label of the private key stored in the ICSF
PKDS. Also, issue refresh for the in-storage copies of the CSFKEYS Class profiles:
RDEFINE CSFKEYS REMOTE.ISKLM.CERT UACC(NONE)
PERMIT REMOTE.ISKLM.CERT CLASS(CSFKEYS) ID(ISKLMSRV) ACCESS(READ)
SETROPTS RACLIST(CSFKEYS) GENERIC(CSFKEYS) REFRESH

For information about how to use this certificate containing the public key when
encrypting data to tape, see z/OS DFSMS Software Support for IBM System Storage
TS1130 and TS1120 Tape Drives (3592), SC26-7514.

Verifying the Keyring can be accessed by the Java Keytool/Hwkeytool

Before starting the Security Key Lifecycle Manager for z/OS you must validate that
the keystore is accessible in the Java hwkeytool (for JCECCARACFKS/ICSF keys)
or Java keytool (for JCERACFKS/non-ICSF keys).

The examples show how you would use both hwkeytool and keytool to list the
contents of the keyring.

For ICSF keys:
hwkeytool -debug -J-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider
-list -keystore safkeyring://ISKLMSRV/ISKLMRing -storetype JCECCARACFKS

For keys not in ICSF:
keytool -debug -J-Djava.protocol.handler.pkgs=com.ibm.crypto.provider
-list -keystore safkeyring://ISKLMSRV/ISKLMRing -storetype JCERACFKS

Creating Symmetric Keys for Use with LTO Ultrium 4 and LTO Ultrium
5 Drives

Although z/OS does not support LTO drives, you can run your Security Key
Lifecycle Manager for z/OS and allow an off-platform LTO drive to retrieve keys
from your z/OS. Your Security Key Lifecycle Manager for z/OS can service
TS1120, TS1130, TS1140, LTO Ultrium 4 and LTO Ultrium 5 drives at the same
time. However, for LTO Ultrium 4 and LTO Ultrium 5 drives you must manually
create the symmetric keys in your Security Key Lifecycle Manager for z/OS
keystore to be used for data encryption. See “How the Security Key Lifecycle
Manager for z/OS Processes Encryption Keys ” on page 5 for an overview.

Symmetric keys are not supported by RACF. Your Security Key Lifecycle Manager
for z/OS keystore must be of type JCEKS or JCECCAKS in order to create
symmetric keys for use with LTO Ultrium 4 and LTO Ultrium 5 drives. The
minimum required SDK installation for creating symmetric keys in a JCEKS type
keystore is 50sr5. For JCECCAKS type keystore it is 50sr6.

For more information about using the Java keytool, see “Generating Keys and
Aliases for Encryption on LTO Ultrium 4 and LTO Ultrium 5” on page 72.

60 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Sample Alias and Symmetric Key Setup for LTO Ultrium 4 or LTO
Ultrium 5 Drives Encryption
/u/giampor/tkms:>cat populatesymmkeys.jceccaks.sh
#
echo "Creating RSA Certificate and Public and Private KeyPair in isklm2sharedkeysjceccaksPKDSlabel"
#
keytool -genkey -alias symmkeywrapper -dname "CN=sharedkeysjceccaksSymmetricKeyWrapper" \

-keystore isklm2sharedkeysjceccaksPKDSlabel -provider IBMJCECCA -keyalg RSA -keysize 2048 \
-keypass "password" -storepass "password" -storetype JCECCAKS -validity 999

#
echo "List isklm2sharedkeysjceccaksPKDSlabel"
keytool -list -keystore isklm2sharedkeysjceccaksPKDSlabel -storepass "password" \
-storetype JCECCAKS
#
#
echo "Exporting RSA Certificate/Public Key to isklm2sharedkeysjceccaksPKDSlabelCA.crt"
#
keytool -export -alias symmkeywrapper -file isklm2sharedkeysjceccaksPKDSlabelCA.crt \

-keystore isklm2sharedkeysjceccaksPKDSlabel -provider IBMJCECCA -storepass "password" \
-storetype JCECCAKS

#
#
echo "Creating Symmetric keys in symmkeystorejceccaks"
#
keytool -genseckey -keystore symmkeystorejceccaks -storetype JCECCAKS \

-storepass "symmpassword" -aliasrange ibm01-05 -keyAlg DESede
#
echo "Listing Symmetric keys created"
#
keytool -list -keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
#
echo "import public keys from keystores who want a copy of symmetric keys using a different
alias - in this case isklm2sharedkeysjceccaksPKDSlabelCA.crt from
isklm2sharedkeysjceccaksPKDSlabel"
#
keytool -import -trustcacerts -alias sharedkeysjceccaksCA \
-file isklm2sharedkeysjceccaksPKDSlabelCA.crt \
-keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
#
echo "Listing keystore with public key imported and Symmetric keys"
#
keytool -list -keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
#
echo "Export the Symmetric keys from symmetrickeystore for
sharedkeysjceccaksCA/isklm2sharedkeysjceccaksPKDSlabel"
#
keytool -exportseckey -aliasrange ibm01-05 -keyalias sharedkeysjceccaksCA \
-keystore symmkeystorejceccaks \
-storepass "symmpassword" -storetype JCECCAKS -keypass "symmpassword" \
-exportfile symKeysexported.jcecca.cer
#
#
echo "Import the Symmetric keys into isklm2sharedkeysjceccaksPKDSlabel

- i.e., sharedkeysjceccaksCA but assume must use my orignal alias symmkeywrapper
or it won’t know how to get the private key"

#
keytool -importseckey -keyalias symmkeywrapper -keypass "password" \
-keystore isklm2sharedkeysjceccaksPKDSlabel \
-storepass "password" -storetype JCECCAKS -importfile symKeysexported.jcecca.cer
#
#
echo "list isklm2keystore containing RSA keypair and symmetric keys"
#
keytool -list -keystore isklm2sharedkeysjceccaksPKDSlabel -storepass "password" \
-storetype JCECCAKS
/u/giampor/tkms:>

Setting up the Security Key Lifecycle Manager for z/OS keystore to
communicate with tape drives

The topic shows an example of a shell script you can create. You can create it to
configure a JCECCAKS type keystore with 15 symmetric keys. It can be used to
serve keys to TS1120, TS1130, TS1140, LTO Ultrium 4, and LTO Ultrium 5 tape
drives.
/u/isklmsrv/temp/symmkeytest:>cat createisklmkeys.sh
##
Setup ISKLM Keystore
##
echo "\nCreating the ISKLM Server Certificate and corresponding RSA Public and Private KeyPair in
ISKLMKeystoreCCA where private key is stored in ICSF PKDS. \n"#

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 61

hwkeytool -genkey -alias CERT2 -dname "CN=MyCo ISKLM Server" -keystore ISKLMKeystoreCCA \
-provider IBMJCECCA -keyalg RSA -keysize 2048 -keypass "password" -storepass "password" \
-storetype JCECCAKS -hardwaretype PKDS -validity 999
#
echo "\nCreating a Certificate and correpsonding RSA Public and Private Keypair to be used to
wrap symmetric keys that will be imported into ISKLMKeystoreCCA.
Private key is also stored in ICSF PKDS. \n"
#
hwkeytool -genkey -alias symmkeywrapper -dname "CN=ISKLM Symmetric Key Wrapper" \
-keystore ISKLMKeystoreCCA -provider IBMJCECCA -keyalg RSA -keysize 2048 -keypass "password" \
-storepass "password" -storetype JCECCAKS -hardwaretype PKDS -validity 999
#
echo "\nList contents of the ISKLMKeystoreCCA. \n"
keytool -list -keystore ISKLMKeystoreCCA -storepass "password" -storetype JCECCAKS
#
echo "\nExporting the Symmetric Key Wrapper Certificate/Public Key to myCoSymmKeyWrapper.crt. \n"
#
keytool -export -alias symmkeywrapper -file myCoSymmKeyWrapper.crt -keystore ISKLMKeystoreCCA \
-provider IBMJCECCA -storepass "password" -storetype JCECCAKS
#
###
Create symmetric keys
#
This example creates 15 symmetric keys in a separate keystore and exports them to a
file to be imported into the ISKLM Keystore.
Optionally the symmetric keys can be created right into the ISKLM keystore.
This example is to show the various symmetric/secure key commands.
Note that only the keytool can be used (not hwkeytool), thus the there is no option to
specify -hardwaretype PKDS to store the symmetric keys in ICSF but rather the symmetric
keys will be stored in a password protected keystore.
Also note that the -keyAlg must be DESede if specifying -storetype JCECCAKS or
planning to exchange tapes with a z/OS ISKLM defined with that storetype.
For DESede, the -keysize default is 168.
For -storetype JCEKS, -keyAlg should be AES and -keysize 256
(unless zOSCompatibility flag is set to true).
##
#
echo "\nCreating 15 Symmetric keys in symmkeystorejceccaks. \n"
#
keytool -genseckey -keystore symmkeystorejceccaks -storetype JCECCAKS -storepass "symmpassword" \
-keypass "symmpassword" -aliasrange ibm01-0F -keyAlg DESede
#
echo "\nListing Symmetric keys created. \n"
#
keytool -list -keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
echo "\nImport public keys from keystores who want a copy of symmetric keys..in this case alias
symmkeywrapper which was exported from EMKeystore4758 into myCoSymmKeyWrapper.crt. Note that I
can change the alias on import and that by specifying noprompt the certificate will be imported
as a trusted certificate. \n"
#
keytool -import -noprompt -alias ExternalCoCA -file myCoSymmKeyWrapper.crt \
-keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
echo "\nListing keystore with public key imported and Symmetric keys. \n"
#
keytool -list -keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS
#
echo "\nExport the Symmetric keys from the symmetric keystore for ExternalCoCA
(i.e., symmkeywrapper in ISKLMKeystoreCCA). \n"
#
keytool -exportseckey -aliasrange ibm01-0F -keyalias ExternalCoCA \
-keystore symmkeystorejceccaks -storepass "symmpassword" -storetype JCECCAKS \
-keypass "symmpassword" -exportfile symKeysexported.ExternalCoCA.cer
#
##
Import the symmetric keys into the ISKLMKeystoreCCA. Again note that there is currently no
option to specify the keys to go into the ICSF PKDS but rather the keys will be stored in the
password protected keystore.
##
echo "\nImport the Symmetric keys into ISKLMKeystoreCCA. Note that you must use the correct
alias, in this case ’symmkeywrapper’ or keytool won’t know how to find the private key. \n"
#
keytool -importseckey -keyalias symmkeywrapper -keypass "password" -keystore ISKLMKeystoreCCA \
-storepass "password" -storetype JCECCAKS -importfile symKeysexported.ExternalCoCA.cer
#
echo "\nList ISKLMKeystoreCCA containing 2 RSA keypairs and 15 imported symmetric keys.\n"
#
keytool -list -keystore ISKLMKeystoreCCA -storepass "password" -storetype JCECCAKS

Sample Output from Shell Script

This section shows an example of the output of running the shell script:
/u/isklmsrv/temp/symmkeytest:>. createisklmkeys.sh

Creating the ISKLM Server Certificate and corresponding RSA Public and Private KeyPair in
ISKLMKeystoreCCA where private key is stored in ICSF PKDS.

62 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Creating a Certificate and correpsonding RSA Public and Private Keypair to be used
to wrap symmetric keys that will be imported into ISKLMKeystoreCCA. Private key
is also stored in ICSF PKDS.

List contents of the ISKLMKeystoreCCA.

Keystore type: JCECCAKS
Keystore provider: IBMJCECCA

Your keystore contains 2 entries

symmkeywrapper, Jul 31, 2007, keyEntry,
Certificate fingerprint (MD5): 89:E0:0A:32:A7:B4:A4:F1:F6:4D:B9:F5:68:69:91:C3
CERT2, Jul 31, 2007, keyEntry,
Certificate fingerprint (MD5): 16:B1:94:79:C1:C6:77:C5:6E:84:99:5C:D1:88:9E:65

Exporting the Symmetric Key Wrapper Certificate/Public Key to myCoSymmKeyWrapper.crt.

Certificate stored in file <myCoSymmKeyWrapper.crt>

Creating 15 Symmetric keys in symmkeystorejceccaks.

KeyTool is generating batch keys. This process will take a while, be patient ...
15 secret keys have been generated

Listing Symmetric keys created.

Keystore type: JCECCAKS
Keystore provider: IBMJCECCA

Your keystore contains 15 entries

ibm000000000000000008, Jul 31, 2007, keyEntry,
ibm00000000000000000f, Jul 31, 2007, keyEntry,
ibm000000000000000007, Jul 31, 2007, keyEntry,
ibm00000000000000000e, Jul 31, 2007, keyEntry,
ibm000000000000000006, Jul 31, 2007, keyEntry,
ibm00000000000000000d, Jul 31, 2007, keyEntry,
ibm000000000000000005, Jul 31, 2007, keyEntry,
ibm00000000000000000c, Jul 31, 2007, keyEntry,
ibm000000000000000004, Jul 31, 2007, keyEntry,
ibm00000000000000000b, Jul 31, 2007, keyEntry,
ibm000000000000000003, Jul 31, 2007, keyEntry,
ibm00000000000000000a, Jul 31, 2007, keyEntry,
ibm000000000000000002, Jul 31, 2007, keyEntry,
ibm000000000000000001, Jul 31, 2007, keyEntry,
ibm000000000000000009, Jul 31, 2007, keyEntry,

Import public keys from keystores who want a copy of symmetric keys..in this case alias
symmkeywrapper which was exported from EMKeystore4758 into myCoSymmKeyWrapper.crt.
Note that I can change the alias on import and that by specifying noprompt the certificate
will be imported as a trusted certificate.

Certificate was added to keystore

Listing keystore with public key imported and Symmetric keys.

Keystore type: JCECCAKS
Keystore provider: IBMJCECCA

Your keystore contains 16 entries

ibm000000000000000008, Jul 31, 2007, keyEntry,
ibm00000000000000000f, Jul 31, 2007, keyEntry,
ibm000000000000000007, Jul 31, 2007, keyEntry,
ibm00000000000000000e, Jul 31, 2007, keyEntry,
ibm000000000000000006, Jul 31, 2007, keyEntry,
ibm00000000000000000d, Jul 31, 2007, keyEntry,
ibm000000000000000005, Jul 31, 2007, keyEntry,
ibm00000000000000000c, Jul 31, 2007, keyEntry,
ibm00000000000000000b, Jul 31, 2007, keyEntry,
ibm000000000000000004, Jul 31, 2007, keyEntry,
ibm00000000000000000a, Jul 31, 2007, keyEntry,
ibm000000000000000003, Jul 31, 2007, keyEntry,
ibm000000000000000002, Jul 31, 2007, keyEntry,
ibm000000000000000001, Jul 31, 2007, keyEntry,
externalcoca, Jul 31, 2007, trustedCertEntry,
Certificate fingerprint (MD5): 89:E0:0A:32:A7:B4:A4:F1:F6:4D:B9:F5:68:69:91:C3
ibm000000000000000009, Jul 31, 2007, keyEntry,

Export the Symmetric keys from the symmetric keystore for ExternalCoCA
(i.e., symmkeywrapper in ISKLMKeystoreCCA).

15 secret keys have been successfully exported

Import the Symmetric keys into ISKLMKeystoreCCA. Note that you must use the correct alias,

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 63

in this case ’symmkeywrapper’ or keytool won’t know how to find the private key.

15 secret keys have been imported

List ISKLMKeystoreCCA containing 2 RSA keypairs and 15 imported symmetric keys.

Keystore type: JCECCAKS
Keystore provider: IBMJCECCA

Your keystore contains 17 entries

ibm000000000000000008, Jul 31, 2007, keyEntry,
ibm00000000000000000f, Jul 31, 2007, keyEntry,
ibm000000000000000007, Jul 31, 2007, keyEntry,
ibm00000000000000000e, Jul 31, 2007, keyEntry,
ibm000000000000000006, Jul 31, 2007, keyEntry,
ibm00000000000000000d, Jul 31, 2007, keyEntry,
ibm000000000000000005, Jul 31, 2007, keyEntry,
ibm00000000000000000c, Jul 31, 2007, keyEntry,
ibm000000000000000004, Jul 31, 2007, keyEntry,
ibm00000000000000000b, Jul 31, 2007, keyEntry,
ibm000000000000000003, Jul 31, 2007, keyEntry,
ibm00000000000000000a, Jul 31, 2007, keyEntry,
ibm000000000000000002, Jul 31, 2007, keyEntry,
ibm000000000000000001, Jul 31, 2007, keyEntry,
symmkeywrapper, Jul 31, 2007, keyEntry,
Certificate fingerprint (MD5): 89:E0:0A:32:A7:B4:A4:F1:F6:4D:B9:F5:68:69:91:C3
CERT2, Jul 31, 2007, keyEntry,
Certificate fingerprint (MD5): 16:B1:94:79:C1:C6:77:C5:6E:84:99:5C:D1:88:9E:65
ibm000000000000000009, Jul 31, 2007, keyEntry,

Setting up the Security Key Lifecycle Manager for z/OS configuration
file

Before you start Security Key Lifecycle Manager for z/OS, you must create the
configuration file for your Security Key Lifecycle Manager for z/OS. The
configuration file defines many parameters including which port the Security Key
Lifecycle Manager for z/OS runs on. It also defines the keystore or keyring where
it can find the X.509 Digital Certificates. See Chapter 4, “Configuring the Security
Key Lifecycle Manager for z/OS,” on page 79.

Creating file system and mount point to contain configuration
files

The configuration file is initially read by the Security Key Lifecycle Manager for
z/OS server upon startup. The file is written back to the file when the Security
Key Lifecycle Manager for z/OS server is stopped. During the startup process, the
Security Key Lifecycle Manager for z/OS attempts a filecreate to the directory for a
file with the name .backup. This setting is done to ensure that the server can write
back to the configuration file when stopped.

Take these steps:
1. Create a file system, for example hlq.ISKLMSRV.ZFS and mount at

/u/isklmsrv. See sample job SCKLSAMP(CKLCZFS).
2. Define a directory for each system to contain a Security Key Lifecycle Manager

for z/OS configuration file unique to that specific system.
3. Ensure the RACF ID that the Security Key Lifecycle Manager for z/OS server

uses, ISKLMSRV, is the owner of the /u/isklmsrv and subsequent directories
and files.

The following are samples of configuration files for each keystore type, which can
help you to get started. The examples show various keystore locations, directories,
and file names. You must customize them for your system configuration. The
examples for JCECCARACFKS and JCERACFKS show setting up a system named
JA0. It is a member of a sysplex that is setup to use Unix Systems Services Shared

64 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

HFS. A sample configuration file can be found in /usr/lpp/ISKLM/samples/
ISKLMConfig.properties.zos.

Example Configuration File for JCEKS

This example configuration file for JCEKS is named /u/isklmsrv/
ISKLMConfig.properties.zos.jceks.

If supporting LTO drives, add
symmetricKeySet = ibm01-1F4

This would represent 500 symmetric keys. Symmetric keys are only required when
supporting LTO encryption drives.

Example Configuration File for JCECCARACFKS

This example configuration file for JCECCARACFKS is named
/u/isklmsrv/JA0/ISKLMConfig.properties.zos.JCECCARACFKS .

Admin.ssl.keystore.name = /u/isklmsrv/ISKLMKeystore
Admin.ssl.keystore.password = password
Admin.ssl.keystore.type = jceks
Admin.ssl.truststore.name = /u/isklmsrv/ISKLMKeystore
Audit.event.outcome = success,failure
Audit.event.types = all
Audit.eventQueue.max = 0
Audit.handler.file.directory = /u/isklmsrv/keylifecyclemanager/keylifecyclemanager/audit
Audit.handler.file.name = isklmaudit.log.jceks
Audit.handler.file.size = 10000
Audit.metadata.file.name = /u/isklmsrv/metafile.xml
config.drivetable.file.url = FILE:///u/isklmsrv/keylifecyclemanager/drivetable
config.keystore.file = /u/isklmsrv/ISKLMKeystore
config.keystore.password = password
config.keystore.provider = IBMJCE
config.keystore.type = jceks
drive.acceptUnknownDrives = true
ds8k.acceptUnknownDrives = true
drive.default.alias1 = CERT1
drive.default.alias2 = CERT1
fips = Off
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = /u/isklmsrv/ISKLMKeystore
TransportListener.ssl.keystore.password = password
TransportListener.ssl.keystore.type = jceks
TransportListener.ssl.port = 5443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = /u/isklmsrv/ISKLMKeystore
TransportListener.ssl.truststore.type = jceks
TransportListener.tcp.port = 3801

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 65

Example Configuration File for JCERACFKS

This example configuration file for JCERACFKS is named /u/isklmsrv/JA0/
ISKLMConfig.properties.zos.JCERACFKS .

Quick Test Running Security Key Lifecycle Manager for z/OS Under
USS

For test environments you can start the Security Key Lifecycle Manager for z/OS
from USS or OMVS to run in the foreground. Using this setting, you can quickly
attempt to write or read an encrypted tape. However, for production purposes it is
best that you follow the steps in the topic “Setting up and running Security Key
Lifecycle Manager for z/OS in Production Mode” on page 67.

Admin.ssl.keystore.name = safkeyring://ISKLMSRV/ISKLMRing
Admin.ssl.truststore.name = safkeyring://ISKLMSRV/ISKLMRing
Audit.event.outcome = success,failure
Audit.event.types = all
Audit.eventQueue.max = 0
Audit.handler.file.directory = /isklmlogs/JA0/audit
Audit.handler.file.name = audit.log
Audit.handler.file.size = 10000
Audit.metadata.file.name = /u/isklmsrv/metafile.xml
config.drivetable.file.url = FILE:/u/isklmsrv/JA0/filedrive.table
config.keystore.file = safkeyring://ISKLMSRV/ISKLMRing
config.keystore.password = password
config.keystore.provider = IBMJCECCA
config.keystore.type = JCECCARACFKS
drive.acceptUnknownDrives = true
ds8k.acceptUnknownDrives = true
drive.default.alias1 = ISKLMServer
drive.default.alias2 = ISKLMServer
fips = Off
requireHardwareProtectionForSymmetricKeys = true
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = safkeyring://ISKLMSRV/ISKLMRing
TransportListener.ssl.keystore.password = password
TransportListener.ssl.keystore.type = JCECCARACFKS
TransportListener.ssl.port = 1443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = safkeyring://ISKLMSRV/ISKLMRing
TransportListener.ssl.truststore.type = JCECCARACFKS
TransportListener.tcp.port = 3801

Admin.ssl.keystore.name = safkeyring://ISKLMSRV/ISKLMRing
Admin.ssl.truststore.name = safkeyring://ISKLMSRV/ISKLMRing
Audit.event.outcome = success,failure
Audit.event.types = all
Audit.eventQueue.max = 0
Audit.handler.file.directory = /isklmlogs/JA0/audit
Audit.handler.file.name = audit.log
Audit.handler.file.size = 10000
Audit.metadata.file.name = /u/isklmsrv/metafile.xml
config.drivetable.file.url = FILE:/u/isklmsrv/JA0/filedrive.table
config.keystore.file = safkeyring://ISKLMSRV/ISKLMRing
config.keystore.password = password
config.keystore.provider = IBMJCE
config.keystore.type = JCERACFKS
drive.acceptUnknownDrives = true
ds8k.acceptUnknownDrives = true
drive.default.alias1 = ISKLMServer
drive.default.alias2 = ISKLMServer
fips = Off
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = safkeyring://ISKLMSRV/ISKLMRing
TransportListener.ssl.keystore.password = password
TransportListener.ssl.keystore.type = JCERACFKS
TransportListener.ssl.port = 1443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = safkeyring://ISKLMSRV/ISKLMRing
TransportListener.ssl.truststore.type = JCERACFKS
TransportListener.tcp.port = 3801

66 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

To run the Security Key Lifecycle Manager for z/OS in the foreground, you must
have either a USS or OMVS session. You must verify the Java version in your path,
see “Verify the Java Version” on page 44.

Ensure that you add the /usr/lpp/ISKLM/IBMSKLM.jar to your classpath. From
your USS or OMVS session, you can run one of the following commands based on
the keystore type you are using. Be sure to replace the properties file with the
location of your properties file:

JCEKS

/u/isklmsrv/:> java com.ibm.ltklm.ISKLMServer
/u/isklmsrv/ISKLMConfig.properties.zos.jceks

JCECCAKS

/u/isklmsrv/:> java com.ibm.ltklm.ISKLMServer
/u/isklmsrv/ISKLMConfig.properties.zos.jceccaks

JCERACFKS

u/isklmsrv/:>
java -Djava.protocol.handler.pkgs=com.ibm.crypto.provider
com.ibm.ltklm.ISKLMServer
/u/isklmsrv/ISKLMConfig.properties.zos.jceracfks

JCECCARACFKS

u/isklmsrv/:>
java -Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider
com.ibm.ltklm.ISKLMServer
/u/isklmsrv/ISKLMConfig.properties.zos.jceccaracfks

You can now attempt to write and read encrypted tapes using a tape drive against
this Security Key Lifecycle Manager for z/OS Server. If you are setting up a z/OS
tape drive to run in-band with your Security Key Lifecycle Manager for z/OS, see
“Note about z/OS configuration steps for z/OS in-band encrypted tape drive” on
page 88.

To stop the Security Key Lifecycle Manager for z/OS server submit the quit
command. Shutting down the Security Key Lifecycle Manager for z/OS server
overwrites the ISKLMConfig.properties.zos.jceks with any changes made to it
while the Security Key Lifecycle Manager for z/OS Server is running. See
Chapter 5, “Administering the Security Key Lifecycle Manager for z/OS,” on page
89 for more information about Security Key Lifecycle Manager for z/OS
commands.
quit
Stopping the ISKLM admin service...
/u/isklmsrv:>

Setting up and running Security Key Lifecycle Manager for z/OS in
Production Mode

Define the Security Key Lifecycle Manager for z/OS as a started
task

A procedure consists of a set of job control language statements that are frequently
used together to achieve a certain result. Procedures are located in the system
procedure library, SYS1.PROCLIB, which is a partitioned data set. A started
procedure is started by an operator, but can be associated with a functional
subsystem.

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 67

Run Security Key Lifecycle Manager for z/OS as a started procedure on z/OS
using the JZOS batch launcher. The JZOS batch launcher is shipped as part of the
z/OS Java product. To define the Security Key Lifecycle Manager for z/OS as a
started procedure update the started class table with the z/OS user ID of the
Security Key Lifecycle Manager for z/OS. For more information about RACF
processing and the definition of started procedures see, z/OS Security Server RACF
Security Administrator's Guide.
1. In this example, the user ID of the Security Key Lifecycle Manager for z/OS

instance on z/OS is ISKLMSRV. The group associated with the started
procedure is sys1. You can tailor these examples to suit your needs. To set up
the STARTED class, enter these commands (for example):
SETROPTS GENERIC(STARTED)
RDEFINE STARTED ISKLM*.* STDATA(USER(ISKLMSRV) GROUP(STCGROUP) TRACE(YES))
SETROPTS CLASSACT(STARTED) SETROPTS RACLIST(STARTED)
SETROPTS RACLIST(STARTED) GENERIC(STARTED) REFRESH

2. Create a home directory. Use the home directory specified on the RACF
adduser command issued in “Setting up a user ID to run the Security Key
Lifecycle Manager for z/OS” on page 45:
Example: /u/isklmsrv

Create a file system and mount point for Security Key Lifecycle
Manager logging of debug and audit logs

The Security Key Lifecycle Manager for z/OS can create audit records that wrap
the log to three files. When the last file becomes full, the first file is rewritten. The
Chapter 7, “Audit Records,” on page 117 topic explains the events that the Security
Key Lifecycle Manager for z/OS audits and the format of the audit records. You
must allocate a file system space for the Security Key Lifecycle Manager for z/OS
audit logs. If requested by the IBM Service, the Security Key Lifecycle Manager for
z/OS debug log might need to be enabled.

If the file system fills up and can no longer be extended, the Security Key Lifecycle
Manager for z/OS continues to run without logging. However, a noticeable
performance degradation can be encountered if the file system is an HFS. If you
use a ZFS file system, there might not be a change in performance.
1. Allocate a file system specifically for use by the Security Key Lifecycle Manager

for z/OS for audit and debug file storage. Assume 500 cylinders of space
allocated to the Security Key Lifecycle Manager for z/OS's audit and debug log
file system. Observe the tape and Security Key Lifecycle Manager for z/OS
activity to determine how quickly the audit logs wrap. The file system must
not be shared by the Security Key Lifecycle Manager for z/OS instances
running in a sysplex environment. The file system must be private to each
Security Key Lifecycle Manager for z/OS instance. This setting prevents any
possible interleaving of audit or debug logs between Security Key Lifecycle
Manager for z/OS instances.

2. Mount the isklmlogs file system and create a directory for each system that the
Security Key Lifecycle Manager for z/OS runs on. For example, the two file
systems created by the statements below are isklmlogs with JA0 and JB0 being
two system names of two images within a sysplex.
/isklmlogs/JA0
/isklmlogs/JB0

68 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Create a new PDS to contain the shell script for the JZOS
launcher
1. Create a new PDS to contain the STDENV environmental variables. In this

example, a portioned data set was allocated whose name is
ISKLMSRV.ENCRYPT.CONFIG
ISKLMSRV.ENCRYPT.CONFIG
Organization . . . : PO
Record format . . . : FB
Record length . . . : 80
Block size : 6160
1st extent cylinders: 3

Secondary cylinders : 1

Create a Member in ISKLMSRV.ENCRYPT.CONFIG

Create/edit the shell script contents. See member CKLENV with alias ISKLMENV
in the SCKLSAMP library. The text that is preceded by # in the example designates
a comment. The example shows a setup for the system JA0. JA0 is a member of a
PDS “ISKLMSRV.ENCRYPT.CONFIG” that is pointed to by the Security Key
Lifecycle Manager for z/OS start procedure.

Shell script example to create member in ISKLMSRV.ENCRYPT.CONFIG
This is a shell script which configures
any environment variables for the Java JVM.
Variables must be exported to be seen by the launcher.

. /etc/profile

export JAVA_HOME="/usr/lpp/java/J5.0"
export PATH=/bin:"${JAVA_HOME}"/bin:

LIBPATH=/lib:/usr/lib:"${JAVA_HOME}"/bin
LIBPATH="$LIBPATH":"${JAVA_HOME}"/bin/classic

export LIBPATH="$LIBPATH":

Customize your CLASSPATH here
CLASSPATH=${JAVA_HOME}/lib
CLASSPATH=/u/isklmsrv:$CLASSPATH

export CLASSPATH="$CLASSPATH":

Set JZOS specific options
export ISKLMCLASS="com.ibm.ltklm.ISKLMServer"
export ISKLMARGS="/u/isklmsrv/JA0/ISKLMConfig.properties.zos.jceccaracfks"
export JZOS_MAIN_ARGS="$ISKLMCLASS $ISKLMARGS"

Configure JVM options (if any)
for JCECCARACFKS, following IJO definition is required
IJO="-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider"
for JCERACFKS, following IJO definition is required
IJO="-Djava.protocol.handler.pkgs=com.ibm.crypto.provider"
for JCEKS and JCECCAKS, no IJO definition is required
export IBM_JAVA_OPTIONS="$IJO"

#export JAVA_DUMP_HEAP=false
#export JAVA_PROPAGATE=NO
#export IBM_JAVA_ZOS_TDUMP=NO

Customize and install Security Key Lifecycle Manager start
procedure

Create the started task JCL. See member CKLPROC with alias ISKLM in the
SCKLSAMP library. Ensure that you review the installation documentation for the

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 69

z/OS Java product. The documentation contains additional guidelines, annotated
samples, and step by step installation instructions for the JZOS Batch Launcher
function.

The JZOS Batch Launcher is supported by its own set of environment variables.
For further information about the JZOS Batch Launcher, see JZOS Batch Launcher
and Toolkit Installation and User's Guide located at http://www.ibm.com/servers/
eserver/zseries/software/java/jzos/overview.html.

JCL example to create member in a library in the system proclib concatenation.

Example of Security Key Lifecycle Manager for z/OS start procedure for z/OS
//ISKLM PROC JAVACLS=’com.ibm.jzosekm.ISKLMConsoleWrapper’,
// ARGS=, < Args to Java class
// LIBRARY=’JZOS.LOADLIB’, < STEPLIB FOR JVMLDM module
// VERSION=’14’, < JVMLDM version: 14, 50, 56
// LOGLVL=’+T’, < Debug LVL: +I(info) +T(trc)
// REGSIZE=’0M’, < EXECUTION REGION SIZE
// LEPARM=’’
//**
//*ISKLM PROC JAVACLS=’ISKLMConsoleWrapper’, < fully qualified Java class
//*
//*Stored procedure for executing the JZOS Batch Launcher
//*Specifically, to execute the Security Key Lifecycle Manager under JZOS
//*
//**
//ISKLM EXEC PGM=JVMLDM&VERSION,REGION=®SIZE,
// PARM=’&LEPARM/&LOGLVL &JAVACLS &ARGS’
//STEPLIB DD DSN=&LIBRARY,DISP=SHR
//SYSPRINT DD SYSOUT=* < System stdout
//SYSOUT DD SYSOUT=* < System stderr
//STDOUT DD SYSOUT=* < Java System.out
//STDERR DD SYSOUT=* < Java System.err
//CEEDUMP DD SYSOUT=*
//ABNLIGNR DD DUMMY
//***
//*
//*The following member contains the JVM environment script
//*
//* &SYSNAME symbolic for the system unique ConfigFile
//*
//***
//STDENV DD DSN=ISKLMSRV.ENCRYPT.CONFIG(&SYSNAME.),DISP=SHR
//

Create Security Key Lifecycle Manager for z/OS configuration file

You must create an Security Key Lifecycle Manager for z/OS configuration file for
each system on which you plan to run an Security Key Lifecycle Manager for
z/OS. In this example, the configuration file is called /u/isklmsrv/JA0/
ISKLMConfig.properties.zos.jceccaracfks where JAO is the system name. Read
Chapter 4, “Configuring the Security Key Lifecycle Manager for z/OS,” on page 79
for information about how to set up this file for z/OS production mode.

Starting and Stopping Security Key Lifecycle Manager on z/OS

The Security Key Lifecycle Manager for z/OS process can now be started with the
operator start command, as a started task. The operator console can be used to
issue commands through operator modify commands. The sample excerpt from the
z/OS operators console, shows the start of the Security Key Lifecycle Manager for
z/OS. This command is an operator issued modify command to list the drives
known to the Security Key Lifecycle Manager for z/OS, and its termination.

70 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://www.ibm.com/servers/eserver/zseries/software/java/jzos/overview.html
http://www.ibm.com/servers/eserver/zseries/software/java/jzos/overview.html

Example contents of z/OS operator console
S ISKLM
$HASP100 ISKLM ON STCINRDR
IEF695I START ISKLM WITH JOBNAME ISKLM IS ASSIGNED TO USER ISKLMSRV, GROUP SYS1
$HASP373 ISKLM STARTED
ISKLM console interaction is now available. 546
To submit commands to the ISKLM from the console:

F ISKLM,APPL=’ISKLM command’
To stop the ISKLM properly:

P ISKLM
Loaded drive key store successfully
Starting the Encryption Key Manager 2.0-20070419
Processing Arguments
Processing
Server is started
Server is running. TCP port: 3801, SSL port: 443

F ISKLM,APPL=’LISTDRIVES’
Drive entries: 14
SerialNumber = 00000AZ00011
SerialNumber = 000001365050
SerialNumber = 000001365043
SerialNumber = 000001365042
SerialNumber = 000001365041
SerialNumber = 000001365012
SerialNumber = 000001365067
SerialNumber = 000001365037
SerialNumber = 00000AZ00127
SerialNumber = 000001350808
SerialNumber = 00000AZ00125
SerialNumber = 000001365089
SerialNumber = 000001365088
SerialNumber = 000001365031

P ISKLM
Stopping the ISKLM admin service...
Server is not started
ISKLM stop command received
IEF170I 1 ISKLM - ===
IEF170I 1 ISKLM - REGION
IEF170I 1 ISKLM - STEPNAME PROCSTEP PGMNAME CC USED CP
IEF170I 1 ISKLM - ISKLM JVMLDM14 00 100K 00:00
IEF170I 1 ISKLM - ===
IEF170I 1 ISKLM - NAME- TOTALS: CPU TIME= 00:0
IEF170I 1 ISKLM - ===
$HASP395 ISKLM ENDED

Note:
To properly end the Security Key Lifecycle Manager for z/OS server, issue the
MVS™ STOP Command,
STOP ISKLM

from the operator console. If the Security Key Lifecycle Manager for z/OS is
canceled (CANCEL command) instead of being stopped, then critical data can be
lost.

In general, commands that can be issued from the shell environment to manage
the Security Key Lifecycle Manager for z/OS can be issued from the operator
console. These commands are specified using the modify command (F), with the
syntax used for Security Key Lifecycle Manager for z/OS as documented in this
publication enclosed in quotation marks. For example, use the following syntax:f
isklm,appl=’isklm_command’. If the isklm_command is not bounded by quotation
marks, the command is not accepted by ISKLMConsoleWrapper and an error
message appears on the console. Invalid isklm_commands bounded by quotation
marks are not accepted by the Security Key Lifecycle Manager for z/OS server and

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 71

an error message appears on the console. Consult “Command Line Interface
Commands” on page 92 for the valid Security Key Lifecycle Manager for z/OS
command syntax.

Generating Keys and Aliases for Encryption on LTO Ultrium 4 and LTO
Ultrium 5

Keytool is the preferred utility for managing keys, certificates, and aliases. It
enables you to generate, import, and export your encryption data keys and store
them in a keystore.

Each data key in the keystore is accessed through a unique alias. An alias is a
string of characters, such as 123456tape. In JCEKS and most other keystores,
123456Tape would be equivalent to 123456tape and can access the same entry in
the keystore. Check the documentation for your keystore type to determine
whether it is case-sensitive. When you use the keytool -genseckey command to
generate a data key, you specify a corresponding alias in the same command. The
alias identifies the correct key in the correct key group and keystore. It is used in
writing and reading encrypted data on LTO Ultrium 4 and LTO Ultrium 5 tape.

Note: Individual aliases and alias ranges must be unique. This requirement is
enforced when keys are generated on a given keystore/Security Key Lifecycle
Manager for z/OS instance. However, in a multiple Security Key Lifecycle
Manager for z/OS or Keystore environment, you should use a naming convention.
Use a naming convention that maintains uniqueness across multiple instances in
the event it becomes necessary to transport keys between instances while
maintaining uniqueness of reference.

After generating keys and aliases, update the symmetricKeySet property in the
ISKLMConfig.properties.zos file to specify the new alias, range of aliases, or key
group GroupID. You must also update the filename under which the symmetric
keys are stored, and the filename where key groups are defined. See “Creating and
managing key groups” on page 76 for details. Only those keys named in the
symmetricKeySet are validated (checked for an existing alias and a symmetric key
of the proper size and algorithm). If an invalid key is specified in this property, the
software does not start and an audit record is created.

The keytool utility also provides for the import and export of data keys to and
from other keystores. An overview of each task follows. You can issue the keytool
-help to show all the related parameters covered in the following discussions.

If you are not using Keytool

If you use a utility other than keytool to generate keys and aliases, you cannot
generate ranges of keys compatible with the Security Key Lifecycle Manager for
z/OS. To generate individual keys compatible with the Security Key Lifecycle
Manager for z/OS, be sure to specify aliases using one of the following formats:
v 12 printable characters or less (for example, abcdefghijk)
v 3 printable characters, followed by two zeros, followed by 16 hexadecimal digits

(for example, ABC000000000000000001) for a total of exactly 21 characters

Generating data keys and aliases using Keytool -genseckey

The Keytool utility generates aliases and symmetric keys for encryption on LTO
Ultrium 4 and LTO Ultrium 5 Tape Drives using LTO Ultrium 4 and LTO Ultrium

72 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

5 tape. Use the keytool -genseckey command to generate one or more secret keys
and store them in a specified keystore. keytool -genseckey takes the following
parameters:

-genseckey [-v] [-protected]
[-alias <alias> | aliasrange <aliasRange>] [-keypass <keypass>]
[-keyalg <keyalg>] [-keysize <keysize>]
[-keystore <keystore>] [-storepass <storepass>]
[-storetype <storetype>] [-providerName <name>]
[-providerPath <pathlist>]

These parameters are important when generating data keys for Security Key
Lifecycle Manager for z/OS to serve to the LTO Ultrium 4 and LTO Ultrium 5
drives for tape encryption:

-alias
Specify an alias value for a single data key with up to 12 printable characters
(for example, abcfrg or key123tape).

-aliasrange
When generating multiple data keys, aliasrange is specified as a 3-character
alphabetic prefix. It is followed by lower and upper limits for a series of
16-character (hexadecimal) strings with leading zeroes filledin automatically to
construct aliases 21-characters in length. For example, specifying key1-a would
yield a series of aliases from KEY000000000000000001 through
KEY00000000000000000A. Specifying an aliasrange value of xyz01-FF would yield
XYZ000000000000000001 through XYZ0000000000000000FF, which would generate
255 symmetric keys.

-keypass
Specifies a password used to protect the data key. This password must be
identical to the keystore password. If no password is specified, you are
prompted for it. If you press Enter at the prompt, the key password is set to
the same password used for the keystore. keypass must be at least six characters
long.

Note: When you have set the keystore password, do not change it unless its
security has been breached. See “Changing Keystore Passwords” on page 74.

-keyalg
Specifies the algorithm to be used to generate the data key. If the encrypted
tape is shared with systems on the z/OS platform and the zOSCompatibility
property is set to true, the key algorithm should be specified as DESede. This
setting ensures compatibility.

-keysize
Specifies the size of the data key to be generated. The key size must be
specified as 256. If -keyalg is specified as DESede for z/OS compatibility, then
-keysize must be allowed to default to 168.

Examples of acceptable aliases that can be associated with symmetric keys are:
abc000000000000000001
abc00a0120fa000000001

Examples of aliases that would not be accepted are:
abcefghij1234567 ? wrong length
abcg0000000000000001 ? prefix is longer than 3 characters

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 73

If an alias exists in the keystore, keytool throws an exception and stops.

Changing Keystore Passwords

Note: When you have set the keystore password, do not change it unless its
security has been breached. The passwords are obfuscated to eliminate any security
exposure. This command will change both the keystore password and all of the
aliases in the keystore with one command:
keytool -keystore <keystorename> -storetype <keystoretype>
-keypasswd -new <newpassword> -all -storepasswd -new <newpassword>

Note: The value for both -new keywords MUST be identical.

You must also edit ISKLMConfig.properties.zos to change the keystore password in
every server configuration file property where it is specified using one of these
methods:
v Delete the entire obfuscated password and type the new password in the clear.

This refers to the non-obfuscated property. For example,
config.keystore.password. It will be obfuscated on the next startup.

v Delete the entire obfuscated password and set the Security Key Lifecycle
Manager for z/OS to prompt on the next startup.

Importing data keys using Keytool -importseckey

Use the keytool -importseckey command to import a secret key or a batch of secret
keys from an import file. keytool -importseckey takes the following parameters:

-importseckey [-v]
[-keyalias <keyalias>] [-keypass <keypass>]
[-keystore <keystore>] [-storepass <storepass>]
[-storetype <storetype>] [-providerName <name>]
[-importfile <importfile>]

These parameters are important when importing data keys for the Security Key
Lifecycle Manager for z/OS to serve to the LTO Ultrium 4 and LTO Ultrium 5
drives for tape encryption:

-keyalias
Specifies the alias of a private key in keystore to decrypt all the data keys in
importfile.

-importfile
Specifies the file that contains the data keys to be imported.

Exporting data keys using keytool -exportseckey

Use the keytool -exportseckey command to export a secret key or a batch of secret
keys to an export file. keytool -exportseckey takes the following parameters:

-exportseckey [-v]
[-alias <alias> | aliasrange <aliasRange>] [-keyalias <keyalias>]
[-keystore <keystore>] [-storepass <storepass>]
[-storetype <storetype>] [-providerName <name>]
[-exportfile <exportfile>]

74 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

These parameters are important when exporting data keys for Security Key
Lifecycle Manager for z/OS to serve to the LTO Ultrium 4 and LTO Ultrium 5
drives for tape encryption:

-alias
Specify an alias value for a single data key with up to 12 printable characters
(for example, abcfrg or key123tape).

-aliasrange
When exporting multiple data keys, aliasrange is specified as a 3-character
alphabetic prefix. It is then followed by lower and upper limits for a series of
16-character (hexadecimal) strings with leading zeroes filled-in automatically to
construct aliases 21-characters in length. For example, specifying key1-a would
yield a series of aliases from KEY000000000000000001 through
KEY00000000000000000A. Specifying an aliasrange value of xyz01-FF would yield
XYZ000000000000000001 through XYZ0000000000000000FF

-exportfile
Specifies the file to store the data keys when they are exported.

-keyalias
Specifies the alias of a public key in keystore to encrypt all the data keys.
Ensure that the keystore where the symmetric (data) keys are, contains the
corresponding private key.

Sample alias and symmetric key setup for LTO Ultrium 4 and
LTO Ultrium 5 encryption using a JCEKS keystore

Invoke the KeyTool with the -aliasrange option.

If the encrypted tape is shared with systems on the z/OS platform and
zOSCompatibility property is set to true, then key algorithm (-keyalg) must be
specified as: DESede.
keytool –genseckey –v –aliasrange AES01-FF –keyalg DESede
–keypass password -storetype jceks –keystore path/filename.jceks

These KeyTool invocations generate 255 sequential aliases in the range
AES000000000000000001 through AES0000000000000000FF and associated AES
256-bit symmetric keys. Either can be repeated cumulatively. It can be done as
many times as necessary to setup the full number of ranged and stand-alone key
aliases that are needed for robust operation. For example, to generate an additional
alias and symmetric key for LTO Ultrium 4 and LTO Ultrium 5:
$JAVA_HOME/bin/keytool –genseckey –v –alias abcfrg –keyalg AES –keysize 256
–keypass password -storetype jceks –keystore path/filename.jceks

This invocation adds stand-alone alias abcfrg cumulatively. It is added to the
named keystore which already contains 255 aliases from the invocation above
yielding 256 symmetric keys in the JCEKS file named in –keystore option.

Update the symmetricKeySet property in the ISKLMConfig.properties.zos file. Add
the following line to match any or all of the alias ranges used above, and the
filename under which the symmetric keys were stored. The Security Key Lifecycle
Manager for z/OS cannot start if an invalid alias is specified. Other causes for
validation check failure can include incorrect bit size (for AES keysize must be 256)
or an invalid algorithm for the platform. The file name specified in the
config.keystore.file must match the name specified in the –keystore <filename> in
the KeyTool invocation:

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 75

symmetricKeySet = AES01-FF,abcfrg
config.keystore.file = <filename>.jceks

Only those keys named in the symmetricKeySet is checked for an existing alias
and a symmetric key of the proper size and algorithm. If an invalid key is
specified in this property, the Security Key Lifecycle Manager for z/OS cannot start
and an audit record is created.

Creating and managing key groups
The Security Key Lifecycle Manager for z/OS gives you the ability to organize
your symmetric keys for LTO Ultrium 4 and LTO Ultrium 5 encryption into key
groups. You can group keys according to the type of data they encrypt, or by any
other specification. When a key group is created, you can associate it with a
specific tape drive using the -symrec keyword in the adddrive command. See
“adddrive” on page 92 for syntax.

In order to build a key group, you must define it in the KeyGroups.xml file. If you
are creating the configuration file manually, the location of the KeyGroups.xml file
is specified in the configuration properties file:
config.keygroup.xml.file = FILE:KeyGroups.xml

If this parameter is not specified, then the default behavior is to use the
KeyGroups.xml file from the Security Key Lifecycle Manager for z/OS working
directory of the launching location. If this file does not exist, an empty
KeyGroups.xml file is created.

Key groups are built using the following CLI commands (see “Command Line
Interface Commands” on page 92 for syntax):

Using CLI Commands to define key groups

The Security Key Lifecycle Manager for z/OS has a key group feature that allows
you to group sets of keys.

When the Security Key Lifecycle Manager for z/OS application is installed and
configured and the Security Key Lifecycle Manager for z/OS server is started,
follow these steps:
1. Run the createkeygroup command.

This command creates the initial key group object in the KeyGroups.xml file.
Run this command once.
Syntax: createkeygroup -password password

-password
The password that is used to encrypt the password of the keystore in the
KeyGroups.xml file for later retrieval. The keystore encrypts the key of the
key group, which in turn encrypts each individual key group alias
password. Therefore no key in the KeyGroups.xml file is in the clear.

Example: createkeygroup -password a75xynrd
2. Run the addkeygroup command.

This command creates an instance of a key group with a unique group ID in
the KeyGroups.xml.
Syntax: addkeygroup -groupID groupname

76 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

-groupID
The unique groupname used to identify the group in the KeyGroups.xml
file.

Example: addkeygroup -groupID keygroup1
3. Run the addkeygroupalias command.

This command creates an alias for an existing key alias in your keystore for
addition to a specific key group ID.
Syntax: addkeygroupalias -alias aliasname -groupID groupname

-alias
The new aliasname for the key. This name must be the full key name. That
is, Key00 must be entered as key000000000000000000.

-groupID
The unique groupname used to identify the group in the KeyGroups.xml
file.

Example: addkeygroupalias -alias key000000000000000000 -groupID keygroup1

Note: When using this CLI command, you can only add one key at time. This
command must be run for every individual key that must be added to the key
group.

4. Associate a key group with a new or existing tape drive.
a. Run the moddrive command to associate a key group with an existing tape

drive.
This command modifies tape drive information in the device table.
Syntax: moddrive -drivename drivename -symrec alias

-drivename
drivename specifies the serial number of the tape drive.

-symrec
Specifies an alias (of the symmetric key) or a key group name for the
tape drive.

Example: moddrive -drivename 000123456789 -symrec keygroup1
b. Run the adddrive command to add a tape drive to the device table and

associate it with a key group.
This command allows you to add a drive and associate it with a specific
key group.
Syntax: adddrive -drivename drivename -symrec alias

-drivename
drivename specifies the 12-digit serial number of the drive to be added.

-symrec
Specifies an alias (of the symmetric key) or a group ID for the tape
drive.

Example: adddrive -drivename 000123456789 -symrec keygroup1

When no alias is defined for a tape drive, specify a key group to be used as default
for use. Set the symmetrickeySet property of the configuration properties file to the
GroupID of the key group you want to use. For example,
symmetricKeySet = keygroup1

The group ID must match an existing key group ID in the KeyGroups.xml file. If
not, the Security Key Lifecycle Manager for z/OS Server does not start. The

Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores 77

Security Key Lifecycle Manager for z/OS tracks key usage within a key group.
When you specify a valid group ID, the Security Key Lifecycle Manager for z/OS
records which key was last used. It then selects a random key from within the
specified key group.

Copying keys from one key group to another

Run addaliastogroup command.

This command copies a specific alias from an existing (source) key group to a new
(target) key group.

Syntax: addaliastogroup -aliasID aliasname -sourcegroupID groupname
-targetgroupID groupname

-aliasID
The aliasname for the key to be added.

-sourcegroupID
The unique groupname used to identify the group from which the alias is to be
copied.

-targetgroupID
The unique groupname used to identify the group to which the alias is to be
added.

Example: addaliastogroup -aliasID aliasname -sourcegroupID keygroup1
-targetgroupID keygroup2

Note: Key is available in both key groups.

78 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 4. Configuring the Security Key Lifecycle Manager for
z/OS

The Configuring topics explain how to deploy and configure Security Key Lifecycle
Manager for z/OS.

Configuration strategies
Some configuration settings in the ISKLMConfig.properties.zos file provide
shortcuts that may have effects you should know about.

Automatically update device table
The Security Key Lifecycle Manager for z/OS provides variables in the
configuration file to automatically update the device table. These variables are
drive.acceptUnknownDrives and ds8k.acceptUnknownDrives (for DS8000). If you
set the value to true, the device table is automatically populated when a new
device contacts Security Key Lifecycle Manager for z/OS. This method eliminates
the need to use the adddrive command for each tape drive or library. In this mode,
the 12-digit serial number for each of these devices need not be entered using the
CLI commands. The new drives undergo the normal public and private key
cryptography exchange to verify the identity of the tape device. When this
verification is complete, the new device is able to read existing tapes based on the
EEDKs or key IDs stored on them. This is if the corresponding key information is
found in the configured keystore.

Note: The Security Key Lifecycle Manager for z/OS server must be refreshed
using the command “refresh” on page 97 after drives are added automatically. This
ensures that they are stored in the device table.

For DS8000, the device is automatically associated with the certificates that are
configured on the device when it makes a request to the Security Key Lifecycle
Manager for z/OS.

For TS1120, TS1130, or TS1140 drives, this capability allows you to set the default
certificate alias (or key label). This capability also allows you to set an alternate
certificate alias (drive.default.alias1, drive.default.alias2) for encryption on newly
added devices. For LTO Ultrium 4 and LTO Ultrium 5 drives, you can set the
default symmetric key pool (symmetricKeySet) for encryption on newly added
devices. You can have the Security Key Lifecycle Manager for z/OS fully configure
the device with associated key material when the device makes contact. You can
also configure the device after the tape drive has been added to the device table,
using the moddrive command.

This feature relieves the administrator from entering the 12-digit serial number for
each of the tape drives the Security Key Lifecycle Manager for z/OS will service. It
also allows a default environment for large systems configurations.

The devices are added automatically and can be associated with a certificate alias
(able to write a tape with that certificate alias). The added security check that the
administrator would perform when adding the devices manually is skipped. As a
consequence, there can be a slight reduction in security. It is important that you
evaluate the advantages and disadvantages of this option. Determine if

© Copyright IBM Corp. 2006, 2011 79

automatically adding the tape drive information to the device table, and implicitly
granting that new device access to the certificate information is an acceptable
security risk.

Note: The drive.acceptUnknownDrives and ds8k.acceptUnknownDrives properties
are set to false by default. Thus, the Security Key Lifecycle Manager for z/OS
does not allow new drives to the device table automatically. Choose the mode you
want to operate in and change the configuration accordingly.

Global default alias (key label) for TS1120, TS1130, and
TS1140 tape drive writes

An option is available to set the Security Key Lifecycle Manager for z/OS default
for the primary alias and secondary aliases. These aliases are used to wrap the
data encrypting key. They are used when writing to a TS1120, TS1130, or TS1140
Tape Drive that is not supplied with key labels. The values in these two variables
are used when a tape device in the device table does not have a defined alias to
use when writing a tape. The Security Key Lifecycle Manager for z/OS then uses
the drive.default.alias1 and drive.default.alias2 variables if they are set.

Note: The global default alias must be set in the ISKLMConfig.properties.zos file
if:
v the tape drive is not supplied with key labels
v the acceptUnknownDrives setting is true
v a previously unknown tape drive communicates with the Security Key Lifecycle

Manager for z/OS

Otherwise, the newly accepted drive cannot write tapes. The values in
drive.default.alias1 and 2 must be defined with alias/key labels for this setting to
work correctly. On the TS3500, the default alias (either defined in the properties file
or the drive alias) is used to verify the Security Key Lifecycle Manager for z/OS
operation. The test is done using a three-part test. If at least one set of aliases is not
defined, the third part of the test fails, even though the Security Key Lifecycle
Manager for z/OS is functional. See IBM System Storage TS3500 Tape Library
Operator Guide for instructions on performing the test.

Synchronizing data between two Security Key Lifecycle
Manager for z/OS servers

The device table and configuration properties file can be synchronized between
two Security Key Lifecycle Manager for z/OS servers. Synchronization can be done
manually by using the CLI client sync command. You can also synchronize
automatically by setting four properties in the ISKLMConfig.properties.zos file.

Note: Neither synchronization method acts on the keystore or key groups XML
file. They must be copied manually. If your environment uses Shared HFS function
for Unix Systems Services and you use shared directories for debug and error logs,
use of the sync -all or sync -config command is not commonly done. Using the
commands changes the log settings on synchronized systems to use the same
directories. Only the sync -drivetable command should be used for this type of
configuration. The automatic synchronization function is only enabled when a
valid IP address is specified in the sync.ipaddress property of the
ISKLMConfig.properties.zos file. See “Automatic Synchronization” on page 81.
Neither synchronization method acts on the keystore or key groups XML file. They
must be copied manually.

80 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Manual Synchronization

The manual method involves using the CLI client sync command. The syntax is as
follows:

sync {-all | -config | -drivetab} -ipaddr ip_addr :sslport [-merge | -rewrite]

This command sends the configuration file properties or the device table
information or both. The file or information is sent from the source server to the
destination server specified by the –ipaddr parameter. The receiving Security Key
Lifecycle Manager for z/OS server must be up and running.

Required fields

-all
Send both the configuration properties file and the device table information to
the server specified by -ipaddr.

-config
Send only the configuration properties file to the server specified by -ipaddr.

-drivetab
Send only the device table information to the server specified by -ipaddr.

-ipaddr
ip_addr:sslport specifies the address and ssl port of the receiving server. The
sslport must match the value specified for “TransportListener.ssl.port” in the
ISKLMConfig.properties.zos file of the receiving server.

Optional fields

-merge
Merge (add) new device table data with current data on receiving server. (The
configuration file is always a rewrite.) This setting is the default setting.

-rewrite
Replace the current data on the receiving server with new data.

Automatic Synchronization

The device table and properties file can be sent from a primary Security Key
Lifecycle Manager for z/OS server to a secondary server automatically. The
secondary server must be running for synchronization of the data to occur. To
automatically synchronize the data from the primary to the secondary, the
following four properties in the primary server ISKLMConfig.properties.zos file
must be specified. There are no changes required to the secondary or receiving
server properties file.

sync.ipaddress
Specifies the address and ssl port of the receiving server, for example,
sync.ipaddress = backupisklm.server.ibm.com:1443

If this property is unspecified or specified incorrectly, automatic
synchronization is disabled.

sync.action
Merge or rewrite the existing data in the receiving server Valid values are
merge (default) and rewrite. Synchronizing the configuration properties always
results in a rewrite.

Chapter 4. Configuring the Security Key Lifecycle Manager for z/OS 81

sync.timeinhours
How often the data must be sent. The value is specified in whole numbers
(hours). The time interval begins when the server is started. The
synchronization will occur after the server has been running for the specified
number of hours. The default is 24 hours.

sync.type
Which data must be sent. Valid values are drivetab (default), config, and all.

If you are using hardware cryptography
Review the following to ensure that your environment meets all requirements.
1. Use one of the following keystore types:

JCECCAKS
JCECCARACFKS
JCERACFKS

Attention: You cannot use both JCERACFKS and JCECCARACFKS keystore
types concurrently in the Security Key Lifecycle Manager for z/OS
configuration file. You must specify only one of these types in the configuration
file. If the JCERACFKS and JCECCARACFKS keystore types are used
concurrently, the Security Key Lifecycle Manager for z/OS server will not start.

2. If you want the RSA key to be secure and not visible in the clear, create your
RSA keys in the ICSF PKDS. Do this using either the RACDCERT PCICC
option or hwkeytool with the -hardwaretype PKDS flag.

3. If you want the data encryption key to be secure and not visible in the clear,
change the configuration to set the
requireHardwareProtectionForSymmetricKeys property to true.

4. Ensure that the IBMJCECCA provider is installed in your java.security provider
list.

If you are not using hardware cryptography
Ensure that your environment meets all the requirement requirements.
v Use a JCEKS keystore type.
v Ensure IBM SDK 5.0 SR5 or SDK 6.0 is installed. For z/OS, the minimum Java

level is 5.0 SR5.
v Obtain a list of all the aliases (or key labels) for the RSA keys that you want to

use. See your keystore documentation for more info on how to get this
information.

v Obtain a list of all the type Drive Serial Numbers you need register. This is
optional if you set drive.acceptUnknownDrives = true for automatic addition of
tape drives to device table and ds8k.acceptUnknownDrives=true to automatically
accept new DS8000 drives.

v Edit the ISKLMConfig.properties.zos file, as shown in “Configuration Basics,” to
customize the entries appropriate for your installation.

Configuration Basics
This procedure contains the minimum steps necessary to configure the Security
Key Lifecycle Manager for z/OS.
1. Use a management tool specific to the keystore type you have chosen to create

a keystore. See “Which Keystore is Right for You” on page 36. When creating

82 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

the keystore, note the path, file name, and the names given to the certificates
and keys. This information is used in later steps.

2. Create a keystore if none exists. Add or import the certificates and keys used
with your tape drives to this new keystore. See “Generating Keys and Aliases
for Encryption on LTO Ultrium 4 and LTO Ultrium 5” on page 72. Take note of
the names given to the certificates and keys. This information is used in later
steps.

3. Edit the ISKLMConfig.properties.zos to update the following values.

Note: The Security Key Lifecycle Manager for z/OS must not be running when
you edit the ISKLMConfig.properties.zos file. If you have previously started
the Security Key Lifecycle Manager for z/OS server, you must exit it or any
changes you make is not saved.
a. Audit.handler.file.directory – specify a location where audit logs are to be

stored.
b. Audit.metadata.file.name – specify a fully qualified path and file name for

the metadata XML file.
c. config.drivetable.file.url – specify a location for information about drives

that are known to the Security Key Lifecycle Manager for z/OS. This file is
not required before starting the server or CLI client. If it does not exist, it is
created during shutdown of the Security Key Lifecycle Manager for z/OS
server.

d. TransportListener.ssl.keystore.name – specify the path and file name of the
keystore created in step 1.

e. TransportListener.ssl.truststore.name - specify the path and file name of the
keystore created in step 1.

f. Admin.ssl.keystore.name - specify the path and file name of the keystore
created in step 1.

g. Admin.ssl.truststore.name - specify the path and file name of the keystore
created in step 1.

h. config.keystore.file - specify the path and file name of the keystore created
in step 1.

i. drive.acceptUnknownDrives - specify true or false. A value of true allows
new tape drives that contact the Security Key Lifecycle Manager for z/OS to
be automatically added to the device table. The default is false.

j. ds8k.acceptUnknownDrives - specify true or false. A value of true allows a
new DS8000 that contacts the Security Key Lifecycle Manager for z/OS to be
automatically added to the device table. The default is false.

4. The following optional password entries can be added or omitted. If these
entries are not specified in ISKLMConfig.properties.zos, the Security Key
Lifecycle Manager for z/OS prompts for the keystore password during the
startup of the server.
a. Admin.ssl.keystore.password - specify the password of the keystore created

in step 1.
b. config.keystore.password - specify the password of the keystore created in

step 1.
c. TransportListener.ssl.keystore.password - specify the password of the

keystore created in step 1.

Chapter 4. Configuring the Security Key Lifecycle Manager for z/OS 83

When added to the ISKLMConfig.properties.zos file, the Security Key
Lifecycle Manager for z/OS obfuscates these passwords for additional security.
Obfuscating the passwords ensures that they do not appear in the clear in the
properties file.

5. Save the changes to ISKLMConfig.properties.zos.
6. Start the Security Key Lifecycle Manager for z/OS server:

To start Security Key Lifecycle Manager for z/OS with JCERACFKS:
java -Djava.protocol.handler.pkgs=com.ibm.crypto.provider
com.ibm.ltklm.ISKLMServer ISKLMConfig.properties.zos

To start Security Key Lifecycle Manager for z/OS with JCECCARACFKS:
java -Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider
com.ibm.ltklm.ISKLMServer ISKLMConfig.properties.zos

To start Security Key Lifecycle Manager for z/OS with JCEKS or JCECCAKS:
java com.ibm.ltklm.ISKLMServer ISKLMConfig.properties.zos

7. Configure a drive by entering the following at the # prompt:
adddrive -drivename drive_name -recl cert_name -rec2 cert_name

For example:
adddrive -drivename 000001365054 -rec1 key1c1 -rec2 key1c2

followed by
listdrives -drivename 000001365054

returns
Entry Key: SerialNumber = 000001365054

Entry Key: AliasTwo = key1c2

Entry Key: AliasOne = key1c1
Deleted : false
Updated : true
TimeStamp : Sun Jul 03 17:34:44 MST 2007

8. Enter the listdrives command at the # prompt to ensure that the drive was
successfully added.

Configuration Properties
The Security Key Lifecycle Manager for z/OS can take advantage of the z/OS
hardware cryptography provided by z/OS ICSF. The feature can be used to
improve the security characteristics of the data encryption key generated by the
Security Key Lifecycle Manager for z/OS. The following configuration properties,
requireHardwareProtectionForSymmetricKeys and zOSCompatibility, can be
considered when running the Security Key Lifecycle Manager for z/OS on the
z/OS platform.

The requireHardwareProtectionForSymmetricKeys and zOSCompatibility
configuration properties implement enhanced symmetric key handling in support
of a Security Key Lifecycle Manager for z/OS. This ensures that tape data
encryption keys can be generated, wrapped, and rewrapped. These actions are
done under multiple RSA keys utilizing z/OS ICSF services and residing in
hardware-protected locations. The Security Key Lifecycle Manager for z/OS can be
configured with these properties. When configured, keys that are sent or received
from the tape drive and used to encrypt data do not appear in an unencrypted
form in z/OS host storage. z/OS ICSF services and zSeries® hardware

84 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

cryptography can be used to secure the RSA key management of symmetric keys.
They are handled in a manner that would prevent these keys from appearing in an
unencrypted form in host storage.

The requireHardwareProtectionForSymmetricKeys flag dictates that symmetric
keys that are generated using ICSF must be protected by the ICSF Master Key. This
way the symmetric key will never show up in the system memory in the clear.
This flag only affects the TS1120, TS1130, TS1140 and DS8000 devices when using a
JCECCAKS and JCERACFCCAKS keystore. LTO devices are not affected since the
keys are pre-generated.

Note: If you use the requireHardwareProtectionForSymmetricKeys flag for
generating keys for LTO drives, these keys cannot be exported using the keytool
-exportseckey option. The tapes written with these keys can only be read by the
Security Key Lifecycle Manager for z/OS that served the key for write operations
or by an Security Key Lifecycle Manager for z/OS that shares the same keystore.
For information about Integrated Cryptographic Services Facility and how to do
exports of protected keys, see http://publib.boulder.ibm.com/infocenter/zos/
v1r11/topic/com.ibm.zos.r11.csfb400/pt2a.htm#pt2a for the callable service called
Data Key Export (CSNBDKX).

The zOSCompatibility flag is used to identify the crypto capabilities of the z/OS
system being used. This flag is typically used when hardware cryptography is
being used on z/OS, ICSF. At one point, ICSF did not support the AES algorithm
that Security Key Lifecycle Manager for z/OS uses and this flag was a work
around for that issue. However, ICSF does support AES now, so this flag does not
need to be used anymore.

Note: If you need to have the zOSCompatibility flag turned on one system, make
sure that you have it turned on all systems that are serving keys to the same
devices.

Note: If this flag is turned on and the ICSF that you are currently using now
supports AES, then you can turn this flag off. This will not affect previously
encrypted cartridges. Any new cartridges will require use of an AES key. Therefore,
the default keygroup for LTO devices must contain AES keys and not DESede
keys.

The Security Key Lifecycle Manager for z/OS, when configured with the
zOSCompatibility property set to true, uses the configured JCE cryptographic
provider. This configuration causes a 168- bit DESede key to be generated in lieu of
a 256 - bit AES key. This key, wrapped using an RSA key which is protected by
hardware cryptographic services, is then provided to the tape drive device. The
tape drive device continues to use 256 - bit AES-GCM encryption. This procedure
is done using the 168- bit key. That key is used to build a 256 - bit AES key that is
then used for data encryption and decryption performed within the device. When
the Security Key Lifecycle Manager for z/OS is running and
requireHardwareProtectionForSymmetricKeys is set to true, this key is always
encrypted in z/OS host storage. The following tables provide additional
information about these Security Key Lifecycle Manager for z/OS configuration
properties.

Chapter 4. Configuring the Security Key Lifecycle Manager for z/OS 85

http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.csfb400/pt2a.htm#pt2a
http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.csfb400/pt2a.htm#pt2a

requireHardwareProtectionForSymmetricKeys configuration
property

Table 9. requireHardwareProtectionForSymmetricKeys property

Value Applies to Description and usage

true | false

Writing and reading tapes on
the z/OS platform only
when using a Security Key
Lifecycle Manager for z/OS
started with any of the jcecca
provider-based keystores.

If true, the data encryption
key used with the
JCECCAKS keystore
protected by z/OS
cryptographic hardware.

Data encryption key
generated for encryption and
decryption only appears in
host storage. It appears in an
encrypted form that is
protected by a hardware
resident master key.

This option only affects z/OS
JCECCA provider keystore
types that are supported as
stated in this publication. It
has no affect on other
keystore types.

Creating Security Key Lifecycle Manager for z/OS configuration file
Create the Security Key Lifecycle Manager for z/OS configuration file in
/u/isklmsrv and customize accordingly for your installation

Audit.handler.file.directory
Modify this parameter to a location where you want the Security Key Lifecycle
Manager for z/OS to store the audit logs.

Audit.metadata.file.name
Specify a file name for the metadata XML file.

config.drivetable.file.url
Specify a location for information about drives that are known to the Security
Key Lifecycle Manager for z/OS. This file is not required to exist before
starting the Security Key Lifecycle Manager for z/OS server or Security Key
Lifecycle Manager for z/OS Admin console. If it does not exist, it is created
during shutdown of the Security Key Lifecycle Manager for z/OS server of
Security Key Lifecycle Manager for z/OS Admin Console.

Admin.ssl.keystore.name
Admin.ssl.truststore.name
config.keystore.file
TransportListener.ssl.keystore.name
TransportListener.ssl.truststore.name

Specify the path and file name of the keystore created previously.

requireHardwareProtectionForSymmetricKeys
This option allows users to define if the data encryption key used with the
JCECCAKS, JCECCA, or JCECCARACFKS keystores are to be protected by
z/OS cryptographic hardware. Keys generated and used by the Security Key
Lifecycle Manager for z/OS only appear in host storage. They appear in an
encrypted form that is protected by a hardware resident master key.

86 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

drive.acceptUnknownDrives
Specify true or false. A value of true allows new tape drives that contact the
Security Key Lifecycle Manager for z/OS to be automatically added to the
device table. The default is false. If you specify true for this value, set
drive.default.alias1 and drive.default.alias2 to the certificate alias and key label
that you previously created.

ds8k.acceptUnknownDrives
Specify true or false. A value of true allows a new DS8000 that contacts the
Security Key Lifecycle Manager for z/OS to be automatically added to the
device table. The default is false.

The following example illustrates a Security Key Lifecycle Manager for z/OS
configuration file using the JCECCARACFKS customized for a z/OS system that is
using shared HFS where systemname = JA0.

Admin.ssl.keystore.name = safkeyring://ISKLMSRV/KLMRing
Admin.ssl.truststore.name = safkeyring://ISKLMSRV/KLMRing
Audit.event.outcome = success,failure
Audit.event.outcome.do = success,failure
Audit.event.types = all
Audit.event.types.backup = data synchronization, runtime, configuration management,
resource management

Audit.eventQueue.max = 0
Audit.handler.file.directory = /isklmlogs/JA0/audit
Audit.handler.file.name = kms_audit.log
Audit.handler.file.size = 10000
Audit.metadata.file.name = /keylifecyclemanager/metafile.xml
config.drivetable.file.url = FILE:/u/isklmsrv/JA0/filedrive.table
config.keystore.file = safkeyring://ISKLMSRV/ISKLMRing
config.keystore.password = password
config.keystore.provider = IBMJCECCA
config.keystore.type = JCECCARACFKS
debug = none
debug.output = simple_file
debug.output.file = /isklmlogs/JA0/debug
drive.acceptUnknownDrives = true
drive.default.alias1 = ISKLMServer
drive.default.alias2 = ISKLMServer
fips = Off
requireHardwareProtectionForSymmetricKeys = true
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = safkeyring://ISKLMSRV/ISKLMServer
TransportListener.ssl.keystore.password = password
TransportListener.ssl.keystore.type = JCECCARACFKS
TransportListener.ssl.port = 1443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = safkeyring://ISKLMSRV/ISKLMServer
TransportListener.ssl.truststore.type = JCECCARACFKS
TransportListener.tcp.port = 3801

Configuring Security Key Lifecycle Manager for z/OS for LTO Ultrium 4
and LTO Ultrium 5 encryption

The management of encryption keys is expected to be performed using existing
keystore management utilities. Another way to manage the encryption keys is
using manual synchronization (extract/export, send, receive, import/insert) of the
keys into the key groups and keystores used by the set of Security Key Lifecycle
Manager for z/OS employed. Using this feature, the names (key IDs, key
aliases/labels, key group IDs) of the symmetric keys is apparent to the Security
Key Lifecycle Manager for z/OS administrators. The key IDs are not meant to be
private or sensitive information.

Chapter 4. Configuring the Security Key Lifecycle Manager for z/OS 87

The expected administrative steps are:
1. Create or import a certificate and private key for Security Key Lifecycle

Manager for z/OS-to-Security Key Lifecycle Manager for z/OS
communications. See the appropriate topic for your operating environment in
Chapter 3, “Installing the Security Key Lifecycle Manager for z/OS and
Keystores,” on page 43.

2. Generate a set of symmetric encryption keys. See “Generating Keys and Aliases
for Encryption on LTO Ultrium 4 and LTO Ultrium 5” on page 72

3. Create key groups, and populate with key aliases. See “Creating and managing
key groups” on page 76.

4. For each Security Key Lifecycle Manager for z/OS, store these keys into the
keystore. This requirement is implicit in the invocation of KeyTool with the
–storetype jceks and –keystore <filename> options. After a suitable number of
stand-alone (-alias) or ranged (-aliasrange) invocations have been issued with
KeyTool, the named keystore file from the command can be specified as a value
for the config.keystore.file environment variable. The Security Key Lifecycle
Manager for z/OS supports formats other than JCEKS as well, see “Which
Keystore is Right for You” on page 36.

Note: If the zOSCompatibility property is set to true, then –keyAlg must be
set to DESede (3-DES) with an implicit effective bit length of 168. Do not specify
this information. Otherwise, -keyalg must be AES and -keysize must be 256.

5. For each Security Key Lifecycle Manager for z/OS, change the configuration.
Set the key groups or key aliases or ranges to refer to the newly created keys.
This setting is done using the configuration file property, symmetricKeySet.
These aliases can be set up to match the aliases set up from KeyTool from steps
1 and 2. All ranged and stand-alone aliases can be specified at the same time,
delimited by commas.

6. After all configurations have been updated, for each Security Key Lifecycle
Manager for z/OS, restart the Security Key Lifecycle Manager for z/OS to
incorporate the configuration changes.

z/OS Java Levels
Ensure that a level of Java for z/OS is installed that contains the JZOS launcher
code. For SDK 5.0 this is SR 5 or higher. See http://www-03.ibm.com/servers/
eserver/zseries/software/java for complete installation instructions on the Java for
z/OS.

Note about z/OS configuration steps for z/OS in-band encrypted tape
drive

If you are using z/OS in-band key management, there are additional configuration
steps that you need to do. One of these steps is the identification of the port that
the z/OS IOS subsystem (proxy support) is using to communicate with the
Security Key Lifecycle Manager for z/OS. The specification of this port must be
specified in the Security Key Lifecycle Manager for z/OS configuration and the
appropriate parmlib member used by the z/OS IOS component. See z/OS DFSMS
Software Support for IBM System Storage TS1130 and TS1120 Tape Drives (3592),
SC26-7514. for information on setting up the z/OS IOS subsystem and specifying
an appropriate port ID.

88 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://www-03.ibm.com/servers/eserver/zseries/software/java
http://www-03.ibm.com/servers/eserver/zseries/software/java

Chapter 5. Administering the Security Key Lifecycle Manager
for z/OS

The Administering topics explain how to perform administrative tasks.

Administering Security Key Lifecycle Manager for z/OS includes initial migration
steps and solving startup problems. The command line interface enables you to
perform administrative tasks such as adding a drive and importing a device table.

Migrating Encryption Key Manager to Security Key Lifecycle Manager
for z/OS

You can migrate Encryption Key Manager versions 1.0, 2.0, and 2.1 to Security Key
Lifecycle Manager for z/OS.

Before you begin

Before you migrate Encryption Key Manager to Security Key Lifecycle Manager for
z/OS, take these steps:
v Use the refresh command to refresh Encryption Key Manager. For more

information, see “refresh” on page 97.
v Use the stopekm command to stop Encryption Key Manager to ensure that there

is no data loss. Encryption Key Manager cannot be active during migration.
v Install Security Key Lifecycle Manager for z/OS on the same computer as

Encryption Key Manager. See, Chapter 3, “Installing the Security Key Lifecycle
Manager for z/OS and Keystores,” on page 43.

v Copy and store critical Encryption Key Manager files in a secure location that is
not in the Encryption Key Manager directory structure. Use these files to restore
Encryption Key Manager, if necessary.
Copy and store the keystore, including all keys and certificates that the
configuration file references. Also copy the configuration file, device table, and
metadata file. Also copy the key groups file, if it exists.
Also examine these properties in the Encryption Key Manager configuration file
to determine the files that you copy:
– config.keygroup.xml.file
– config.drivetable.file.url
– Admin.ssl.keystore.name
– Admin.ssl.truststore.name
– TransportListener.ssl.truststore.name
– TransportListener.ssl.keystore.name
– config.keystore.file
– Audit.metadata.file.name

Note: If the keystores in use are RACF-based (JCERACFKS or
JCERACFCCAKS), then you do not have to back up any of the files referenced
in the listed configuration parameters that have a keystore or truststore. You
must still back up the config.keygroup.xml.file, config.drivetable.file.url, and
Audit.metadata.file.name parameters.

© Copyright IBM Corp. 2006, 2011 89

Procedure
1. Copy the files that you backed up from the Encryption Key Manager to the

directory in which you installed Security Key Lifecycle Manager for z/OS. That
is, copy the configuration file, device table, keygroups file, metadata file, and
keystore file or files, if applicable.

2. Update the Security Key Lifecycle Manager for z/OS configuration file to
specify the new path in which you installed Security Key Lifecycle Manager for
z/OS. Changing the path protects the Encryption Key Manager environment
from being overwritten, in case you need to use Encryption Key Manager
again.

3. Ensure that the Security Key Lifecycle Manager for z/OS configuration file,
named ISKLMConfig.properties.zos, contains the following properties:

Audit.metadata.file.name
Specify the fully qualified path and file name for the XML file in which
metadata is saved. For example:
Audit.metadata.file.name = /u/isklmsrv/metafile.xml

config.keystore.password
Specify the keystore password. For example:
config.keystore.password = ISKLMKeys.jck_password

The password value is initially stored in plain text that is obfuscated
when Security Key Lifecycle Manager for z/OS starts.

TransportListener.ssl.keystore.password
Specify the keystore password. For example:
TransportListener.ssl.keystore.password = SSLKeystore.jck_password

The password value is initially stored in plain text that is obfuscated
when Security Key Lifecycle Manager for z/OS starts.

Admin.ssl.keystore.password
Specify the keystore password. For example:
Admin.ssl.keystore.password = SSLKeystore.jck_password

The password value is initially stored in plain text that is obfuscated
when Security Key Lifecycle Manager for z/OS starts.

Note: If you choose to automatically add a DS8000, you can add the property
ds8k.acceptUnknownDrives= true after you complete the migration.

4. After all configurations have been updated, restart the Security Key Lifecycle
Manager for z/OS to incorporate the configuration changes. See “Starting and
Stopping Security Key Lifecycle Manager on z/OS ” on page 70. If the
Encryption Key Manager used JZOS, Security Key Lifecycle Manager for z/OS
can also use the JZOS launcher to restart. See, “Setting up and running Security
Key Lifecycle Manager for z/OS in Production Mode” on page 67.

5. Check the audit log file to ensure that the migration was successful and that no
errors are logged. For example:
Runtime event:[

timestamp=Sun Oct 24 10:33:28 CDT 2010
ComponentId=[threadId=Thread[main,5,main]]
event source=com.ibm.ltklm.ISKLMServer
outcome=[result=successful]
event type=SECURITY_RUNTIME
resource=[name=ISKLMAdmin;type=application]
action=runISKLMServer
user=[name=ISKLMAdmin]

90 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

]
Resource management event:[

timestamp=Sun Oct 24 10:33:29 CDT 2010
ComponentId=[threadId=Thread[main,5,main]]
event source=com.ibm.ltklm.keygroups.KeyGroupManager
outcome=[result=successful]
event type=SECURITY_MGMT_RESOURCE
action=retrieve
user=[name=KMSAdmin]
resource=[name=SKLMKeys.jck;type=file]
]

Resource management event:[
timestamp=Sun Oct 24 10:33:29 CDT 2010
ComponentId=[threadId=Thread[main,5,main]]
event source=com.ibm.ltklm.keystore.KeyStoreLoader
outcome=[result=successful]
event type=SECURITY_MGMT_RESOURCE
action=retrieve
user=[name=KMSAdmin]
resource=[name=ISKLMKeys.jck;type=file]
]

Runtime event:[
timestamp=Sun Oct 24 10:33:30 CDT 2010
ComponentId=[threadId=Thread[main,5,main]]
event source=com.ibm.ltklm.v
outcome=[result=successful]
event type=SECURITY_RUNTIME
resource=[name=ISKLM server;type=application]
action=start
user=[name=ISKLMAdmin]
]

Runtime event:[
timestamp=Sun Oct 24 10:33:54 CDT 2010
ComponentId=[threadId=Thread[Thread-7,5,main]]
event source=com.ibm.ltklm.ISKLMServer
outcome=[result=successful]
event type=SECURITY_RUNTIME
resource=[name=ISKLM server;type=application]
action=stop
user=[name=ISKLMAdmin]
]

Note: The Encryption Key Manager only supported a flat file audit log.
Security Key Lifecycle Manager for z/OS adds the ability to use SMF to log the
audit records. For more information, see “Configuring the System Management
Facilities Audit log” on page 121.

Solving Security Key Lifecycle Manager for z/OS Startup
Problems

Resolve startup problems by checking the path values.

If Security Key Lifecycle Manager for z/OS fails to start, determine whether you
correctly specified the path values for Encryption Key Manager. For additional
troubleshooting steps, see “Debugging Security Key Lifecycle Manager for z/OS
Server problems” on page 103.

You might revert to using Encryption Key Manager to serve keys until you resolve
Security Key Lifecycle Manager for z/OS problems. Do not run both Encryption
Key Manager and Security Key Lifecycle Manager for z/OS concurrently.

Chapter 5. Administering the Security Key Lifecycle Manager for z/OS 91

Command Line Interface Commands
The Security Key Lifecycle Manager for z/OS provides a command set. The
command set can be used to interact with the Security Key Lifecycle Manager for
z/OS server from a command-line interface client.

Note: When using either a JCERACFKS or JCECCARACFKS keystore, be aware
that specifying a key alias in Java 6 is case-sensitive. When you specify a key alias
in the CLI as a parameter value, ensure that you use the exact case match when
using Java 6. If you do not specify the exact case match, the key cannot be
retrieved from the keystore and it cannot be used during key serving. Specifying a
key alias in Java 5 is not case-sensitive.

addaliastogroup

Copy a specific alias from an existing (source) key group to a new (target) key
group. This is useful when you want to add an alias that exists in one key group
to a different key group.

addaliastogroup -aliasID aliasname -sourcegroupID groupname -targetgroupID
groupname

-aliasID
The aliasname for the key to be added.

-sourcegroupID
The unique groupname used to identify the group from which the alias is to be
copied.

-targetgroupID
The unique groupname used to identify the group to which the alias is to be
added.

Example: addaliastogroup -aliasID aliasname -sourcegroupID keygroup1
-targetgroupID keygroup2

adddrive

Add a new drive to the device table. See “Automatically update device table” on
page 79 to learn how to add tape drives to the device table automatically. See
“Encryption Keys and the TS1120, TS1130, TS1140 Tape Drives ” on page 26,
“Encryption Keys and the LTO Ultrium 4 Tape Drive and LTO Ultrium 5” on page
29, and “Encryption Keys and the DS8000 ” on page 31 for information about alias
requirements.

adddrive -drivename drivename [-rec1 alias] [-rec2 alias][-symrec alias]

-drivename
drivename specifies the 12-digit serial number of the drive to be added.

-rec1
Specifies the alias (or key label) of the certificate of the drive.

-rec2
Specifies a second alias (or key label) of the certificate of the drive.

-symrec
Specifies an alias (of the symmetric key) or a key group name for the tape
drive.

92 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Example: adddrive -drivename 000123456789 -rec1 alias1 -rec2 alias2

addkeygroup

Create an instance of a key group with a unique Group ID in the Key Group XML.

addkeygroup -groupID groupname

-groupID
The unique groupname used to identify the group in the KeyGroup XML file.

Example: addkeygroup -groupID keygroup1

addkeygroupalias

Create an alias for an existing key alias in your keystore for addition to a specific
key group ID.

addkeygroupalias -alias aliasname -groupID groupname

-alias
The new aliasname for the key.

-groupID
The unique groupname used to identify the group in the KeyGroup XML file.

Example: addkeygroupalias -alias aliasname -groupID keygroup1

createkeygroup

Create the initial key group object in the KeyGroups.xml file. Run this command
only once.

createkeygroup -password password

-password
The password that is used to encrypt the password of the keystore in the
KeyGroups.xml file for later retrieval. The keystore encrypts the key of the key
group, which in turn encrypts each individual key group alias password.
Therefore no key in the KeyGroups.xml file is in the clear.

Example: createkeygroup -password password

deletedrive

Delete a drive from the device table. Equivalent commands are rmdrive, deldrive
or removedrive.

deletedrive -drivename drivename

-drivename
drivename specifies the serial number of the drive to be deleted.

Example: deletedrive -drivename 000123456789

Chapter 5. Administering the Security Key Lifecycle Manager for z/OS 93

delgroupalias

Delete a key alias from a key group.

delgroupalias -groupID groupname -alias aliasname

-groupID
The unique groupname used to identify the group in the KeyGroups.xml file.

-alias
The aliasname for the key alias to be removed.

Example: delgroupalias -groupID keygroup1 -alias aliasname

delkeygroup

Delete an entire key group.

delkeygroup -groupID groupname

-groupID
The unique groupname used to identify the group in the KeyGroups.xml file.

Example: delkeygroup -groupID keygroup1

exit

Exit CLI client and stop Security Key Lifecycle Manager for z/OS server.
Equivalent command is quit.

Example: exit

export

Export a device table or Security Key Lifecycle Manager for z/OS server
configuration file to the specified URI.

export {-drivetab|-config} -uri uriname

-drivetab
Export the device table.

-config
Export the Security Key Lifecycle Manager for z/OS server configuration file.

-uri
uriname specifies the location where the file is to be written.

Example: export -drivetab -uri FILE:///keylifecyclemanager/data/export.table

help

Displays the command-line interface command names and syntax. Equivalent
command is ?.

Example: help

94 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

import

Import a device table or configuration file from a specified URI.

import {-merge|-rewrite} {-drivetab|-config} -uri uriname

-merge
Merge the new data with current data.

-rewrite
Replace the current data with new data.

-drivetab
Import the device table.

-config
Import the configuration file.

-uri
uriname specifies the location from which the new data is to be taken.

Example: import -merge -drivetab -uri FILE:///keylifecyclemanager/data/
export.table

list

List certificates and keys contained in keystore named by config.keystore.file
property.

list [-cert |-key|-keysym][-alias alias -verbose |-v]

-cert
List certificates in the specified keystore.

-key
List all keys in the specified keystore.

-keysym
List symmetric keys in the specified keystore.

-alias
alias specifies a specific certificate to list.

-verbose|-v
Displays more information about the certificate.

Examples:
list -v lists everything in the keystore.

list -alias mycert -v lists all available data for the mycert alias if it exists in
the config.keystore.file keystore.

listcerts

List certificates contained in keystore named by config.keystore.file property.

listcerts [-alias alias -verbose |-v]

-alias
alias specifies a specific certificate to list.

-verbose|-v
Displays more information about the certificate.

Chapter 5. Administering the Security Key Lifecycle Manager for z/OS 95

Example: listcerts -alias alias1 -v

listconfig

Lists the Security Key Lifecycle Manager for z/OS server configuration properties
in memory, reflecting the current contents of the ISKLMConfig.properties.zos file
plus any updates made with the modconfig command.

Example: listconfig

listdrives

List drives in device table.

listdrives [-drivename drivename]

-drivename
drivename specifies the serial number of the tape drive to list.

-verbose|-v
Displays more information about the tape drive.

Example: listdrives -drivename 000123456789

modconfig

Modify a property in the Security Key Lifecycle Manager for z/OS server
configuration properties file, ISKLMConfig.properties.zos. Equivalent command is
modifyconfig.

modconfig {-set | -unset} -property name -value value

-set
Set the specified property to the specified value.

-unset
Remove the specified property.

-property
name specifies the name of the target property.

-value
value specifies the new value for the target property when -set is specified.

Example: modconfig -set -property sync.timeinhours -value 24

moddrive

Modify drive information in the device table. Equivalent command is modifydrive.

moddrive -drivename drivename {-rec1 [alias] | -rec2 [alias]| -symrec [alias]}

-drivename
drivename specifies the serial number of the tape drive.

-rec1
Specifies the alias (or key label) of the certificate of the drive.

-rec2
Specifies a second alias (or key label) of the certificate of the drive.

96 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

-symrec
Specifies an alias (of the symmetric key) or a key group name for the tape
drive.

Example: moddrive -drivename 000123456789 -rec1 newalias1

refresh

Tells the Security Key Lifecycle Manager for z/OS to refresh the debug, audit, and
device table values with the latest configuration parameters.

Example: refresh

refreshks

Refreshes the keystore. Use this command to reload the keystore specified in
config.keystore.file. Use this command if it was modified while the Security Key
Lifecycle Manager for z/OS server was running. Use this command only when
needed as it can degrade performance.

Example: refreshks

runscript

Allows a script that contains Security Key Lifecycle Manager for z/OS commands
to be run.

-filename
Specifies the filename of the script to be run. This can contain the path and the
filename, as well.

Example: runscript -filename /u/user/script

status

Displays whether the server is started or stopped.

Example: status

stopisklm

Stops the Security Key Lifecycle Manager for z/OS server.

Example: stopiskm

sync

Synchronizes the configuration file properties, device table information, or both. It
is synchronized on another Security Key Lifecycle Manager for z/OS server with
those on the server issuing the command.

Note:

Neither synchronization method acts on the keystore or KeyGroups.xml file.
These must be copied manually.
If your environment uses Shared HFS function for Unix Systems Services and
you use shared directories for debug and error logs, use of the sync -all or sync

Chapter 5. Administering the Security Key Lifecycle Manager for z/OS 97

-config command is not recommended. This is because the command changes
the log settings on synchronized systems to use the same directories. Only the
sync -drivetable command should be used for this type of configuration.

sync {-all | -config | -drivetab} -ipaddr ip_addr :ssl:port [-merge | -rewrite]

-all
Send both the configuration properties file and the device table information to
the Security Key Lifecycle Manager for z/OS server specified by -ipaddr.

-config
Send only the configuration properties file to the Security Key Lifecycle
Manager for z/OS server specified by -ipaddr.

-drivetab
Send only the device table information to the Security Key Lifecycle Manager
for z/OS server specified by -ipaddr.

-ipaddr
ip_addr:ssl:port specifies the address and ssl port of the receiving Security Key
Lifecycle Manager for z/OS server. The ssl:port must match the value specified
for “TransportListener.ssl.port” in the ISKLMConfig.properties.zos file of the
receiving server.

-merge
Merge new device table data with current data. (The configuration file is
always a rewrite.) This setting is the default setting.

-rewrite
Replace the current data with new data.

Example: sync -drivetab -ipaddr remoteisklm.ibm.com:443 -merge

version

Displays the version of the Security Key Lifecycle Manager for z/OS server.

Example: version

98 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 6. Problem Determination

The Problem Determination topics explain how to address problems encountered
in a Security Key Lifecycle Manager for z/OS environment.

You can enable debugging for an individual component, multiple components, or
all components of the Security Key Lifecycle Manager for z/OS.

There are three places to look for errors:

The Security Key Lifecycle Manager for z/OS audit log
Most error messages appear in the audit log. The location and file name are set
in the Security Key Lifecycle Manager for z/OS ISKLMConfig.properties.zos
file in the Audit.handler.file.directory and Audit.handler.file.name properties.

Standard Error (stderr)
When running the Security Key Lifecycle Manager for z/OS as a started task
using the Security Key Lifecycle Manager for z/OS console wrappers, examine
the Execution LOG for errors. When running the Security Key Lifecycle
Manager for z/OS in the foreground using USS/OMVS, these errors appear
where you have directed STDERR.

The Security Key Lifecycle Manager for z/OS debug log
The location is set in the Security Key Lifecycle Manager for z/OS
ISKLMConfig.properties.zos file debug.output.file property. The data written
to the file is controlled by the debug property. For space reasons, it is best that
you initially set the property to debug = none. If an error is encountered while
Security Key Lifecycle Manager for z/OS is running you can turn debug on.
You can turn debug on by submitting the modconfig –set –property debug
–value all command. If you run into a problem and did not get any debug
information from the Security Key Lifecycle Manager for z/OS audit log or
Standard Error, set debug=all.

Note: The debug log should only be turned on at the direction of IBM service
while debugging a specific problem and must only be turned on for a limited
time. The debug log captures large amounts of data which might fill up the file
system and cause an outage.

This is a list of errors and their possible causes that you might see when running
the Security Key Lifecycle Manager for z/OS:

Error 1

com.ibm.keymanager.j [Caused by java.security.PrivilegedActionException:
java.io.IOException: The private key of ISLKMSERVE is not a software or
icsf key. Error creating key entry because private key is not available.]

Possible causes: If you are using a RACF keystore type (JCECCARACFKS or
JCERACFKS):
v This error can occur if the user ID running the Security Key Lifecycle Manager

for z/OS is not the owner of the KeyRing/Private key. RACF only allows a
private key to be retrieved by its owner.

v This error can occur when starting the Security Key Lifecycle Manager for z/OS.
This error occurs if your keyring has a public key that does not contain a

© Copyright IBM Corp. 2006, 2011 99

corresponding private key, such as a business partners key and that key was not
connected as CERTAUTH (see directions in “Business Partner and Remote z/OS
Systems ” on page 58).

Error 2
Runtime event:[

timestamp=Wed Sep 06 13:30:54 EDT 2006
event source=com.ibm.keymanager.g.fb
outcome=[result=unsuccessful]
event type=SECURITY_RUNTIME
message= ***Error: Information not available for protected private keys..

ErrorCode=0xEE0F
resource=[name= Drive Serial Number: 000001350808 WWN: 500507630F04BC1B

Key Alias/Label[0]: Tape_Sol_Tst_Shr_Pvt_1024_Lbl_02;type=file]
action=stop

Possible cause: This error can occur if unrestricted policy files were not installed.
Refer to “Copying the unrestricted policy files” on page 44. This error usually
appears in the Security Key Lifecycle Manager for z/OS audit log.

Note: This error can also occur with an EE31 error code and the same text. It can
be resolved by installing the unrestricted policy files.

Error 3
java.lang.NoClassDefFoundError: javax/crypto/b

at javax.crypto.Cipher.a(Unknown Source)
at javax.crypto.Cipher.getInstance(Unknown Source)
at com.ibm.keymanager.g.b.a(b.java:189)
at com.ibm.keymanager.g.fb.a(fb.java:937)
at com.ibm.keymanager.g.fb.run(fb.java:1277)

Possible cause: The wrong version, or a corrupt copy, of unrestricted policy files
was installed. This error is sent to STDERR (your job execution log) and not the
Security Key Lifecycle Manager for z/OS audit log.

Error 4
***Error: no such provider: IBMJCE4758. ErrorCode=0xEE0F
Runtime event:[

timestamp=Mon Sep 18 22:43:26 EDT 2006
event source=com.ibm.keymanager.logic.MessageProcessor
outcome=[result=unsuccessful]
event type=SECURITY_RUNTIME
message= ***Error: no such provider: IBMJCE4758. ErrorCode=0xEE0F
resource=[name= Drive Serial Number: 000001350699 WWN: 500507630F0C851C;type=file]
action=stop
]

Possible cause: The Java hardware provider has not been added to the
java.security provider list. This action must be done each time there is a new Java
installation/upgrade if you are planning to use ICSF hardware keys. See “Add the
Java Hardware Provider (Only if Using ICSF)” on page 45.

Error 5

java.security.PrivilegedActionException: java.io.IOException: R_datalib
(IRRSDL00) error: error while getting certificate or trust info (8, 8, 80)

Possible cause: Quotation marks surround the keyring name specified in the
ISKLMConfig.properties.zos file (for example, config.keystore.file =
safkeyring:"//ISKLMSRV/ISKLMRing"). Remove the quotation marks.

Error 6
java.security.PrivilegedActionException: java.io.IOException: Failed validating certificate paths

at java.security.AccessController.doPrivileged1(Native Method)
at java.security.AccessController.doPrivileged(AccessController.java:351)
at com.ibm.keymanager.b.a.a(a.java:23)

100 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

at com.ibm.keymanager.b.a.a(a.java:148)
at com.ibm.keymanager.b.a.b(a.java:138)
at com.ibm.keymanager.i.a.a.h(a.java:711)
at com.ibm.keymanager.i.a.a.c(a.java:595)
at com.ibm.keymanager.KMSAdminCmd.main(KMSAdminCmd.java:2)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:85)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:58)

Possible cause: A CA Certificate is not connected to the KeyRing (note: At least
one CERTAUTH cert is required, even if all certificates are self-signed). This
message can only be displayed in the debug log and occur when attempting to
start the Security Key Lifecycle Manager for z/OS Server.

Error 7

java.lang.NoClassDefFoundError
java.lang.NoClassDefFoundError: com/ibm/keymanager/logic/EncryptionCBDQuery
:at com.ibm.keymanager.logic.RequestEEDKs.createMsg(RequestEEDKs.java:48)
:at com.ibm.keymanager.logic.RequestEEDKs.<init>(RequestEEDKs.java:39)
:at com.ibm.keymanager.logic.MessageProcessor.ProcessMessage(MessageProcessor.java:351)
:at com.ibm.keymanager.logic.MessageProcessor.run(MessageProcessor.java(Compiled Code))

Possible cause: Java is not available. Possibly the file system where Java is
installed has been dismounted. If using in-band key management, you can also see
this IOS error:
IOS628E ENCRYPTION ON DEVICE E0A4 HAS FAILED DUE TO COMMUNICATION TIME OUT
IOS000I E0A4,D6,IOE,01,0E00,,**,A0209A,ITSXZ071 948
804C08C022402751 0301FF0000000000 0000000000000092 2004E82062612111
ENCRYPTION FAILURE
CU = 03 DRIVE = 000000 ISKLM = 000000

Error 8
JVMJZBL2999T JvmExitHook entered with exitCode=-3,
javaMainReturnedOrThrewExcep
JVMJZBL1043N The Java virtual machine completed with
System.exit(-3)

or
ISKLM server is now terminating abnormally with a return code of 4093.

Possible cause: The Java version (or just the Encryption Key Manager JAR version)
was replaced such that the Encryption Key Manager was upgraded from a build
earlier than 20070503 to a build equal to or later than 20070503. If that is the case,
you must define the Audit.metadata.file.name property in the
ISKLMConfig.properties.zos file. This is the name of the XML file where metadata
is saved. This property is required to start versions of Encryption Key Manager
with build date 20070503 (when metadata support was added) and later. See
Chapter 8, “Using Metadata,” on page 127. Check your current Encryption Key
Manager version Before you decide to upgrade to the latest Encryption Key
Manager.

Error 9
Hardware error from call CSNDSYI
java.lang.IllegalArgumentException: System Error: Key
unwrapping is not supported in AMODE(64).. ErrorCode=0xEE31
resource=[name= Drive Serial Number: ds8k_device1 WWN:
57574E414D453030 Key Alias/Label[0]: cert1;type=file]

Possible cause: This error can occur when using Java 6.0 for 64-bit SDK with the
ICSF level not updated to HCR7770 and the
requiredHardwareProtectionForSymmetricKeys is set to true. This error can occur
when a JCECCAKS keystore type is used.

Chapter 6. Problem Determination 101

This error can be resolved by updating your ICSF version to HCR7770.

ICSF Hardware Error

Under some circumstances, an error may occur when Security Key Lifecycle
Manager for z/OS tries to access ICSF hardware crypto functionality. Security Key
Lifecycle Manager for z/OS captures the hardware error message from ICSF, writes
the message to audit log, and closes the socket connection with tape drive or
storage device. The error code and return code in the error message are in decimal
values. A sample message is:Hardware error from call CSNBRNG returnCode
12reasonCode 0.

For more information, see, http://publib.boulder.ibm.com/infocenter/zos/v1r10/
index.jsp?topic=/com.ibm.zos.r10.csfb400/rcrcdes.htm. It documents the error code
and return code in both hexadecimal and decimal forms.

Check these important files for Security Key Lifecycle Manager for
z/OS server problems

When the Security Key Lifecycle Manager for z/OS fails to start check these files
to determine the cause of the problem.
v Debug log

If you set the debug.output.file, debug.output and debug properties to log
activities, check this file to determine the cause of the problem. For more
information see, Chapter 6, “Problem Determination,” on page 99.

v Audit log

– Audit logs contain records that were logged as the Security Key Lifecycle
Manager for z/OS is processing.

– The location of this file is specified by two properties in
ISKLMConfig.properties.zos, the Security Key Lifecycle Manager for z/OS
Server configuration properties file:
- Audit.handler.file.directory – specifies which directory the audit log must

be located
- Audit.handler.file.name – specifies the file name of the audit log.

– For more information about Audit, see Chapter 7, “Audit Records,” on page
117.

v When you are running Security Key Lifecycle Manager for z/OS on JZOS, you
can additionally check STDERR when Security Key Lifecycle Manager for z/OS
fails to launch. When it is launched successfully, the output message goes to the
system log. This is the default behavior, the log message does not show up in
STDOUT. You can customize the default setting provided in sample
PROCLIB.ISKLM to redirect the message to a different log file. The successful
launch message shown at the console is similar to this:
- 16.08.54 TVT4139 STC02013 BPXM023I (IBMUSER) Loaded drive key store
successfully
- 16.08.54 TVT4139 STC02013 BPXM023I (IBMUSER) Loading admin keystore...
- 16.08.54 TVT4139 STC02013 BPXM023I (IBMUSER) Starting the Security Key
Lifecycle Manager 1.1-20110126
- 16.08.54 TVT4139 STC02013 BPXM023I (IBMUSER) Processing Arguments 00
- 16.08.55 TVT4139 STC02013 BPXM023I (IBMUSER) Contact IBM support at
1-800-IBM-SERV (1-800-426-7378) or through your normal business channel.
- 16.08.55 TVT4139 STC02013 BPXM023I (IBMUSER) Processing

102 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

http://publib.boulder.ibm.com/infocenter/zos/v1r10/index.jsp?topic=/com.ibm.zos.r10.csfb400/rcrcdes.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r10/index.jsp?topic=/com.ibm.zos.r10.csfb400/rcrcdes.htm

- 16.08.55 TVT4139 STC02013 BPXM023I (IBMUSER) Server is started
- 16.08.55 TVT4139 STC02013 BPXM023I (IBMUSER) Server is running. TCP
- port: 3801, SSL port: 443

An example STDERR log:

When the Security Key Lifecycle Manager for z/OS is installed as JZOS and the
keystore passwords in the ISKLMConfig.properties.zos file are 128 characters in
length or greater, the Security Key Lifecycle Manager for z/OS will fail to start
because it has no way to prompt for a password of acceptable length. The native
Security Key Lifecycle Manager for z/OS logs will contain entries similar to the
following:
com.ibm.ltklm.KeyManagerException: Default keystore failed to load
at com.ibm.ltklm.keygroups.KeyGroupManager.loadDefaultKeyStore(KeyGroupManager.
at com.ibm.ltklm.keygroups.KeyGroupManager.init(KeyGroupManager.java:202)
at com.ibm.ltklm.ISKLMServer.init(ISKLMServer.java:387)
at com.ibm.ltklm.ISKLMServer.<init>(ISKLMServer.java:214)
at com.ibm.ltklm.ISKLMServer.getInstance(ISKLMServer.java:222)
at com.ibm.ltklm.ISKLMServer.main(ISKLMServer.java:2502)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl
at java.lang.reflect.Method.invoke(Method.java:618)
at com.ibm.jzosekm.ISKLMConsoleWrapper.invokeMain(ISKLMConsoleWrapper.java:297)
at com.ibm.jzosekm.ISKLMConsoleWrapper.main(ISKLMConsoleWrapper.java:50)

Viewing the STDOUT and STDERR logs
The STDOUT and STDERR logs are useful when Security Key Lifecycle Manager
for z/OS running on JZOS fails to launch. These log files help to determine the
cause of the problem.

About this task

Note: This topic applies only if Security Key Lifecycle Manager for z/OS running
on JZOS fails to launch. If Security Key Lifecycle Manager for z/OS launches
successfully, the STDOUT and STDERR logs are not created.

Procedure
1. In ISPF, select Primary Option > S (System Display and Search Facility).
2. Type ST (Status of Jobs) at Command Input.
3. Find the jobname you want to view by specifying Find <jobname>. A list of

jobs is displayed.
4. Type ? at the NP column beside the job that you want to view.
5. Press Enter.
6. Type V at the NP column beside the STDERR or STDOUT.
7. Press Enter to view the contents of the STDERR or STDOUT log.

Results

The contents of the STDERR or STDOUT log is displayed.

Debugging Security Key Lifecycle Manager for z/OS Server problems
Most problems concerning the Security Key Lifecycle Manager for z/OS involve
configuration or starting the server.

Chapter 6. Problem Determination 103

If the Security Key Lifecycle Manager for z/OS fails to start,
check for a firewall.

Either a software firewall or a hardware firewall can be blocking the Security Key
Lifecycle Manager for z/OS from accessing the port.

Server is not started. File name for XML metadata file must be
specified in the configuration file.

The Audit.metadata.file.name entry is missing from the configuration file.

To correct this problem, add the Audit.metadata.file.name property to the
ISKLMConfig.properties.zos configuration file.

Failed to start ISKLM.Mykeys. The system cannot find the
specified file.
1. This error message occurs when the keystore entries in

ISKLMConfig.properties.zos do not point to an existing file.
2. To correct this problem, ensure the following entries in the

ISKLMConfig.properties.zos file point to existing, valid keystore files:
Admin.ssl.keystore.name
TransportListener.ssl.truststore.name
TransportListener.ssl.keystore.name
Admin.ssl.truststore.name

Failed to start Security Key Lifecycle Manager for z/OS. File does
not exist = safkeyring://xxx/yyy

The error can be caused by specifying the wrong provider in the IJO variable in
the Security Key Lifecycle Manager for z/OS environment shell script.

For JCECCARACFKS keystores use:
-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider

and for JCERACFKS keystores use:
-Djava.protocol.handler.pkgs=com.ibm.crypto.provider

Failed to start Security Key Lifecycle Manager for z/OS. Keystore
was tampered with, or password was incorrect.
1. This error occurs if one or more of these entries in the properties file has the

wrong value:
config.keystore.password (corresponds to config.keystore.file)
admin.keystore.password (corresponds to admin.keystore.name)
transportListener.keystore.password (corresponds to
transportListener.keystore.name)

2. This error can also occur if the wrong password is entered at the password
prompt on start-up of the server.

3. If none of the passwords are in the configuration, you are prompted up to three
times. You are prompted if all three keystores entries in the properties file are
unique. If all of the entries in the properties are the same, then you are
prompted once.

104 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Failed to start Security Key Lifecycle Manager for z/OS. Invalid
keystore format.
1. This error can occur when the wrong keystore type is specified for one of the

keystore entries in the properties file.
2. If all of the keystore entries in the properties file point to the same file, the

Security Key Lifecycle Manager for z/OS uses the config.keystore.type value.
This value is used as the keystore type for all keystores.

3. When there is no type entry in the properties file for a particular keystore, the
Security Key Lifecycle Manager for z/OS assumes that the type is jceks.

Failed to start the server. Listener thread is not up and running.

This error can occur for a number of reasons:
1. The following two entries in the ISKLMConfig.properties.zos file point to the

same port:
TransportListener.ssl.port
TransportListener.tcp.port

Each of the transport listeners must be configured to listen on its own port.
2. Either of those entries is configured to a port that is already in use by another

service running on the same machine as the Security Key Lifecycle Manager for
z/OS server. Find ports that are not used by another service and use those to
configure the Security Key Lifecycle Manager for z/OS server.

3. This error can occur if one or both of the ports are lower than 1024. This error
occurs if the user starting the Security Key Lifecycle Manager for z/OS server
is not root. Modify the transport listener entries in the
ISKLMConfig.properties.zos to use ports above 1024.

Error: Unable to find Secretkey in the config keystore with
alias:MyKey.

The symmetricKeySet entry in properties file contains a key alias that does not
exist in the config.keystore.file

To correct this problem, modify the symmetricKeySet entry in the configuration
file. Modify the file to only contain aliases that exist in the keystore file designated
by the config.keystore.file entry in ISKLMConfig.properties.zos OR add the
missing symmetric key to the keystore.

The symmetric key algorithm must be DESede if the
zOSCompatibility flag in the configuration file is set to true.

The zOSCompatibility setting in the ISKLMConfig.properties.zos file is set to true
with symmetricKeySet pointing to an alias of a key that is AES

To correct this problem, set the zOSCompatibility entry in the configuration file to
false OR set the value of symmetricKeySet to specify DESede keys.

The symmetric key algorithm must be AES-256 if the
zOSCompatibility flag in the configuration file is set to false.

The zOSCompatibility setting in the ISKLMConfig.properties.zos file is set to false
with symmetricKeySet pointing to an alias of a key that is DESede

Chapter 6. Problem Determination 105

To correct this problem, set the zOSCompatibility entry in the configuration file to
true OR set the value of symmetricKeySet to specify AES keys.

No symmetric keys in symmetricKeySet, LTO drives cannot be
supported.

This message is an information message. The Security Key Lifecycle Manager for
z/OS server starts, but LTO drives cannot be supported on this instance of Security
Key Lifecycle Manager for z/OS. This is not a problem if there are no LTO drives
configured to communicate with this Security Key Lifecycle Manager for z/OS.

Security Key Lifecycle Manager for z/OS - Reported Errors
This section defines error messages that are reported by the Security Key Lifecycle
Manager for z/OS and returned in the drive sense data. They are typically called
fault symptom codes or FSCs. The table includes the error number, a short
description of the failure, and corrective actions.

Table 10. Errors that are reported by the Key Lifecycle Manager

Error Number Description Action

EE02 Encryption Read Message Failure:
DriverErrorNotifyParameterError: "Bad ASC
& ASCQ received. ASC & ASCQ does not
match with either of Key Creation/Key
Translation/Key Acquisition operation."

The tape drive asked for an unsupported
action. Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Check the versions of
drive or proxy server firmware and update
them to the latest release, if needed. Enable
debug tracing on the server. Try to recreate
the problem and gather debug logs. If the
problem persists, contact IBM for support.
See “Whom Do I Contact for IBM Support?”
on page 109.

EE0F Encryption logic error: Internal error:
"Unexpected error......."

Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Check the versions of
drive or proxy server firmware and update
them to the latest release, if needed. Enable
debug tracing on the server. Try to recreate
the problem and gather debug logs. If the
problem persists, contact IBM for support.
See “Whom Do I Contact for IBM Support?”
on page 109.

Error: Hardware error from call CSNDDSV
returnCode 12 reasonCode 0.

If using hardware cryptography, ensure that
ICSF is started.

EE23 Encryption Read Message Failure: Internal
error: "Unexpected error........"

The message received from the drive or
proxy server cannot be parsed because of
general error. Ensure that you are running
the latest version of the Security Key
Lifecycle Manager for z/OS. Enable debug
on the server. Try to recreate the problem
and gather debug logs. If the problem
persists, contact IBM for support. See
“Whom Do I Contact for IBM Support?” on
page 109.

106 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Table 10. Errors that are reported by the Key Lifecycle Manager (continued)

Error Number Description Action

EE25 Encryption Configuration Problem: Errors
that are related to the device table occurred.

Ensure that the config.drivetable.file.url is
correct in the ISKLMConfig.properties.zos
file, if that parameter is supplied. Run the
listdrives -drivename <drivename>
command on the Security Key Lifecycle
Manager for z/OS server. This command
verifies whether the drive is correctly
configured. For example, the drive serial
number, alias, and certificates are correct.
Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Check the versions of
drive or proxy server firmware and update
them to the latest release, if needed. Enable
debug tracing and try the operation again. If
the problem persists, contact IBM for
support. See “Whom Do I Contact for IBM
Support?” on page 109.

EE29 Encryption Read Message Failure: Invalid
signature

The message received from the drive or
proxy server does not match the signature on
it. Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Enable debug on the
server. Try to recreate the problem and
gather debug logs. If the problem persists,
contact IBM for support. See “Whom Do I
Contact for IBM Support?” on page 109.

EE2B Encryption Read Message Failure: Internal
error: "Either no signature in DSK or
signature in DSK can not be verified."

Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Check the versions of
drive or proxy server firmware and update
them to the latest release, if needed. Enable
debug tracing on the server. Try to recreate
the problem and gather debug logs. If the
problem persists, contact IBM for support.
See “Whom Do I Contact for IBM Support?”
on page 109.

EE2C Encryption Read Message Failure:
QueryDSKParameterError: "Error parsing a
QueryDSKMessage from a device.
Unexpected dsk count or unexpected
payload."

The tape drive asked the Security Key
Lifecycle Manager for z/OS to do an
unsupported function. Ensure that you are
running the latest version of the Security Key
Lifecycle Manager for z/OS. Check the
versions of drive or proxy server firmware
and update them to the latest release, if
needed. Enable debug tracing on the server.
Try to recreate the problem and gather
debug logs. If the problem persists, contact
IBM for support. See “Whom Do I Contact
for IBM Support?” on page 109.

Chapter 6. Problem Determination 107

Table 10. Errors that are reported by the Key Lifecycle Manager (continued)

Error Number Description Action

EE2D Encryption Read Message Failure: Invalid
Message Type

The Security Key Lifecycle Manager for
z/OS received a message out of sequence or
received a message that it does not know
how to handle. Ensure that you are running
the latest version of the Security Key
Lifecycle Manager for z/OS. Enable debug
on the server. Try to recreate the problem
and gather debug logs. If the problem
persists, contact IBM for support. See
“Whom Do I Contact for IBM Support?” on
page 109.

EE2E Encryption Read Message Failure: Internal
error: Invalid signature type

The message received from the drive or
proxy server does not have a valid signature
type. Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Enable debug on the
server. Try to recreate the problem and
gather debug logs. If the problem persists,
contact IBM for support. See “Whom Do I
Contact for IBM Support?” on page 109.

EE30 Prohibited request. An unsupported operation has been
requested for a tape drive. Enter the correct,
supported command for the target tape
drive.

EE31 Encryption Configuration Problem: Errors
that are related to the keystore occurred.

Check the key labels that you are trying to
use or configured for the defaults. You can
list the certificates that are available to the
Security Key Lifecycle Manager for z/OS by
using the listcerts command. If you know
that you are trying to use the defaults, then
run the listdrives -drivename drivename
command. Run the command on the Security
Key Lifecycle Manager for z/OS server to
verify whether the drive is correctly
configured (for example, the drive serial
number, and associated aliases/key labels are
correct). If the drive in question has no
aliases/key labels associated with it, then
check the values of default.drive.alias1 and
default.drive.alias2. If this does not help or
the alias/key label exists, then collect debug
logs and contact IBM for support. See
“Whom Do I Contact for IBM Support?” on
page 109.

EE32 Unable to locate the key requested on a key
for read request made by an LTO device. The
key requested does not exist in the
config.keystore.file.

The probable cause is either that tape was
encrypted using a different Security Key
Lifecycle Manager for z/OS with different
keys. Another cause might be that the key
that was used to encrypt this tape has been
renamed or deleted from the keystore. Issue
list -keysym and ensure that the request
alias is in the keystore.

108 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

||
|
|
|

|
|
|
|
|
|
|
|

Table 10. Errors that are reported by the Key Lifecycle Manager (continued)

Error Number Description Action

EEE1 Encryption logic error: Internal error:
"Unexpected error: EK/EEDK flags conflict
with subpage."

Ensure that you are running the latest
version of the Security Key Lifecycle
Manager for z/OS. Check the versions of
drive or proxy server firmware and update
them to the latest release, if needed. Enable
debug on the server. Try to recreate the
problem and gather debug logs. If the
problem persists, contact IBM for support.
See “Whom Do I Contact for IBM Support?.”

EF01 Encryption Configuration Problem: "Drive
not configured."

The drive that is trying to communicate with
the Security Key Lifecycle Manager for z/OS
is not present in the device table. Ensure that
the config.drivetable.file.url is correct in the
ISKLMConfig.properties.zos file, if that
parameter is supplied. Run the listdrives
command to check whether the drive is in
the list. If not, configure the drive manually
by using the adddrive command with the
correct drive information or set the
"drive.acceptUnknownDrives" or
"ds8k.acceptUnknownDrives" property to
true using the modconfig command. Enable
debug tracing and retry the operation. If the
problem persists, contact IBM for support.
See “Whom Do I Contact for IBM Support?.”

EDC5111I In OMVS, the configuration file permission is
set so that only the owner can read or write
the configuration file.

If you log on and you are not the owner of
the configuration file, you do not have
permission to write to the configuration file.
You might encounter an error similar to this:
- java.io.FileNotFoundException:
/u/isklmsrv/JA0/
ISKLMConfig.properties.zos.JCECCARACFKS
(EDC5111I Permission denied.)

You might encounter this error when
stopping the server, running the refresh
operation, or changing passwords. For best
practices, log on using the user ID with
owner permissions.

Whom Do I Contact for IBM Support?
Find out how to contact IBM when you need support for the product.

The entitlement for software support varies depending on the operating system on
which Security Key Lifecycle Manager for z/OS is running. Support also depends
on whether the support requirement is defect-related or implementation-related.

Table 11. IBM Support Contacts

Type of Support IBM Operating Systems:zOS

Defect Support Contact IBM Service with the name of
the IBM operating system or identifier
and customer number.

Contact IBM Service with the machine
type/model and serial number of the
IBM Tape Library.

Implementation Support 1 Contact SupportLine IBM Service. Contact SupportLine IBM Service.

Chapter 6. Problem Determination 109

Table 11. IBM Support Contacts (continued)

Type of Support IBM Operating Systems:zOS
1 An IBM Supportline contract offers the best Security Key Lifecycle Manager for z/OS implementation assistance.
Some basic implementation assistance can be obtained by contacting IBM Service. Use the same machine type-model
that would be used to report a defect. Should your customer require more extensive implementation assistance,
billable onsite services are available from IGS and Lab Services. Contact IGS Inside Sales (888-426-4343 option 3) to
obtain a Statement of Work (SOW).

If there is a defect, IBM Service is always the first point of contact. The method to
engage IBM Software Service varies depending on the operating system on which
Security Key Lifecycle Manager for z/OS is being run.

For the following IBM operating systems: z/OS contact IBM Service (For US
Customers call 800-IBM-SERV). Select the software option, then identify the
operating system and the same customer number that was used to order the
operating system.

Note: The relevant operating system here is the operating system on which
Security Key Lifecycle Manager for z/OS is running. It is not the operating system
that is generating the encrypted IOs.

Messages
Understand the messages displayed in the admin console and how to resolve
them.

The following messages can be generated by the Security Key Lifecycle Manager
for z/OS and displayed on the admin console.

Failed to Add Drive
Text

Failed to add drive. Device table entry already exists in the Table.

Explanation

The adddrive command failed because the drive is already configured with the
Security Key Lifecycle Manager for z/OS and exists in the device table.

Operator Response

Run the listdrives command to see if the drive is already configured with Security
Key Lifecycle Manager for z/OS. If the drive already exists, the drive configuration
can be changed using moddrive command. Run help for more information.

Failed to Archive the Log File
Text

Failed to archive the log file.

Explanation

The log file cannot be renamed.

110 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Operator Response

Check file permissions and space on that drive.

Failed to Delete the Drive Entry
Text

Failed to delete the drive entry.

Explanation

deldrive command failed to delete the drive entry from the device table.

Operator Response

Check the command syntax using help and make sure parameters supplied are
correct. Make sure the drive is configured with the Security Key Lifecycle Manager
for z/OS using listdrives command. Please check the audit logs for more
information.

Failed to Import
Text

Failed to import. File <URL of file> does not exist.

Explanation

Device table or configuration files cannot be imported.

Operator Response

Make sure the specified URL exists and has read permissions. Check the command
syntax using help. Make sure the parameters are correct and retry.

File Name Cannot be Null
Text

File name cannot be null.

Explanation

Audit file name is not supplied through configuration properties for the Security
Key Lifecycle Manager for z/OS. This parameter is a required configuration
parameter.

System Response

The program stops.

Operator Response

Check that the property Audit.handler.file.name is defined in the configuration
properties file supplied to Security Key Lifecycle Manager for z/OS and try
restarting it.

Chapter 6. Problem Determination 111

File Size Limit Cannot be a Negative Number
Text

File size limit cannot be a negative number.

Explanation

Audit.handler.file.size property value in the Security Key Lifecycle Manager for
z/OS configuration file must be a positive number.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Please specify a valid number for Audit.handler.file.size and try restarting the
Security Key Lifecycle Manager for z/OS.

No Data to be Synchronized
Text

No data can be found to be synchronized with “sync”.

Explanation

The sync command cannot identify any data to be synchronized.

Operator Response

Check the configuration file supplied exists. Check if device table is correctly
configured in the configuration file using config.drivetable.file.url. Check the syntax
using help and retry the sync command.

Invalid Input
Text

Error: Invalid Input. Make sure the command entered is correct and retry.

Explanation

The particular command syntax might not be correct.

Operator Response

Make sure the command entered is correct. Check the command syntax using help.
Make sure parameters supplied are correct and try again.

Invalid SSL Port Number in Configuration File
Text

Invalid SSL port number in configuration file for input string: <port
number>.

112 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Explanation

SSL port number supplied in the configuration file is not a valid number.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Specify valid port number for the TransportListener.ssl.port property in the
configuration file when starting the Security Key Lifecycle Manager for z/OS. Try
to restart.

Invalid TCP Port Number in Configuration File
Text

Invalid TCP port number in configuration file. For input string: <value of
TCP port in config file>

Explanation

TCP port number supplied in the configuration file is not a valid number.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Specify valid port number for the TransportListener.tcp.port property in the
configuration file when starting the Security Key Lifecycle Manager for z/OS. Try
to restart. The default TCP port number is 3801.

Must specify SSL port number in configuration file
Text

Failed to start the server. com.ibm.ltklm.KeyManagerException:
com.ibm.ltklm.KeyManagerException: Must specify SSL port number in
configuration file.

Explanation

SSL port number is a required property to be configured in configuration
properties file. It is used for communication between Security Key Lifecycle
Manager for z/OS servers in a multi-server environment.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Specify valid port number for the TransportListener.ssl.port property and try to
restart the Security Key Lifecycle Manager for z/OS.

Chapter 6. Problem Determination 113

Must Specify TCP Port Number in Configuration File
Text

Failed to start the server. com.ibm.ltklm.KeyManagerException:
com.ibm.ltklm.KeyManagerException: Must specify TCP port number in
configuration file.

Explanation

TCP port number is a required property to be configured in configuration
properties file. It is used for communication between the drive and the Security
Key Lifecycle Manager for z/OS.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Specify valid port number for the TransportListener.tcp.port property and try to
restart the Security Key Lifecycle Manager for z/OS. The default TCP port number
is 3801.

Server failed to start
Text

Failed to start the server.

Explanation

The Security Key Lifecycle Manager for z/OS server cannot start because of
configuration problems.

Operator Response

Check the parameters in the configuration file supplied. Check the logs for more
information.

Sync failed
Text

Sync failed: <error code>

Explanation

Sync operation to synchronize the data between two Security Key Lifecycle
Manager for z/OS servers failed.

Operator Response

Make sure IP address specified for remote Security Key Lifecycle Manager for
z/OS server is correct and that computer is accessible. Make sure that the
configuration file exists and contains correct device table information. Check the
sync command syntax using help. Check the logs for more information.

114 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

The specified audit log file is Read Only
Text

The audit log file can not be opened for writing.

Explanation

Audit log file in the Security Key Lifecycle Manager for z/OS configuration
specified by the property Audit.handler.file.name cannot be opened for writing.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Check the permissions on the given audit file and directory and try restarting the
Security Key Lifecycle Manager for z/OS.

Unable to load the Admin keystore
Text

Loading admin keystore... Invalid keystore format

Explanation

Admin keystore supplied to the Security Key Lifecycle Manager for z/OS cannot
be loaded. Admin keystore is used between Security Key Lifecycle Manager for
z/OS servers for server-side communication in multi-server environment.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Check the configuration file setup. Make sure the properties admin.keystore.file,
admin.keystore.provider and admin.keystore.type in the Security Key Lifecycle
Manager for z/OS configuration file are correct. Ensure that the keystore file exists
and has read permission. Make sure the password supplied for admin keystore
either through admin.keystore.password property or entered on the command line
is correct. Try restarting the Security Key Lifecycle Manager for z/OS.

Unable to load the keystore
Text

com.ibm.ltklm.KeyManagerException: Default keystore failed to load.

Explanation

Keystore specified to the Security Key Lifecycle Manager for z/OS cannot be
loaded.

Chapter 6. Problem Determination 115

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Check the configuration file setup. Make sure the properties config.keystore.file,
config.keystore.provider and config.keystore.type in the Security Key Lifecycle
Manager for z/OS configuration file are correct and the keystore file exists and has
read permission. Make sure the password supplied for the Security Key Lifecycle
Manager for z/OS keystore either through config.keystore.password property or
entered on the command line is correct. Try restarting.

Unable to load the transport keystore
Text

Loading transport keystore... Invalid keystore format.

Explanation

Transport keystore supplied to the Security Key Lifecycle Manager for z/OS cannot
be loaded. Transport keystore is used between Security Key Lifecycle Manager for
z/OS servers for client side communication in multi-server environment.

System Response

The Security Key Lifecycle Manager for z/OS does not start.

Operator Response

Check the configuration file setup. Make sure the properties
TransportListener.ssl.keystore.file, TransportListener.ssl.keystore.provider
and TransportListener.ssl.keystore.type in the Security Key Lifecycle Manager
for z/OS configuration file are correct and the keystore file exists and has read
permission. Make sure the password supplied for admin keystore either through
TransportListener.ssl.keystore.password property or entered on the command
line is correct. Try restarting Security Key Lifecycle Manager for z/OS.

116 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 7. Audit Records

The Auditing topics explain how to audit events in a Security Key Lifecycle
Manager for z/OS environment.

Note: The audit record formats described in this chapter are not considered to be
programming interfaces. The format of these records can change from release to
release. The format is documented in this chapter in case some parsing of the audit
records is wanted.

Audit Overview
Security Key Lifecycle Manager for z/OS provides System Management Facilities
support for audit records. System Management Facilities is a z/OS service aid that
collects information from various z/OS subsystems. The default configuration on
z/OS routes all audit records to System Management Facilities type 83 sub-type 6
records.

You can format Security Key Lifecycle Manager for z/OS audit data using the
RACF SMF data unload utility. For information about how to run the RACF SMF
Data unload utility, see the z/OS Security Server RACF Auditor's Guide.

The audit subsystem writes textual audit records. They are written to a set of
sequential files as various auditable events occur during the processing of requests
by Security Key Lifecycle Manager for z/OS. The audit subsystem writes to a file
(directory and file name are configurable). The file size of these files is also
configurable. As records are written to the file, and the size of the file reaches the
configurable size. The file is then closed and renamed based on the current
timestamp. Another file is opened and records are written to the newly created file.
The overall log of audit records is separated into configurable sized files. Their
names sequenced by the timestamp of when the size of the file exceeds the
configurable size.

To keep the amount of information in the audit log from growing too large,
consider creating a script or program. Create the script to monitor the set of files in
the configured audit container. As files are closed and named based on the
timestamp, the contents of the contents is copied. It is then appended to the
specified long-term, continuous log location and then cleared. Be careful not to
remove or alter the file which is having records written to it by the Security Key
Lifecycle Manager for z/OS while running. This file does not have a timestamp in
the file name.

Audit Configuration Parameters
The following parameters are used in the configuration file of Security Key
Lifecycle Manager for z/OS. The parameters are used to control:
v which events are logged in the audit log
v where the audit log files are written to
v the maximum size of the audit log files

© Copyright IBM Corp. 2006, 2011 117

Audit.event.types
Syntax

Audit.event.types={type[;type]}

Usage

Used to specify which audit types should be sent to the audit log. Possible values
for configuration parameter are:

all All event types

authentication Authentication events

data_synchronization Events that occur during synchronization of information
between Security Key Lifecycle Manager for z/OS servers

runtime Events that occur as a part of processing operations and
requests sent to the Security Key Lifecycle Manager for z/OS

configuration_management Events that occur as configuration changes are made

resource_management Events that occur as resource (tape drive) settings in the
Security Key Lifecycle Manager for z/OS are changed

An example specification for this configuration value is:
Audit.event.types=all

Another example is:
Audit.event.types=authentication;runtime;resource_management

Audit.event.outcome
Syntax

Audit.event.outcome={outcome[;outcome]}

Usage

Used to indicate whether events occurring as a result of successful operations,
unsuccessful operations, or both are to be audited. Specify success for events to be
logged which occur as a result of successful operations. Specify failure for events
to be logged which occur as a result of unsuccessful operations.

An example specification for this configuration value is:
Audit.event.outcome=failure

To activate both successful and unsuccessful cases:
Audit.event.outcome=success;failure

Audit.handler.class
Syntax

Audit.handler.class=default_value

118 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Usage

Used to specify the class that will handle logging audit data. The Security Key
Lifecycle Manager for z/OS installation program sets a default value.

Default
com.ibm.ltklm.audit.file.SimpleFileSecurityEventHandler

The Security Key Lifecycle Manager for z/OS installation program sets this
value as the default on z/OS systems. The property and its value are visible
in the ISKLMConfig.properties.zos file. For more information on changing
the value of this property, refer to information on changing the default
audit setting from SMF to file-based in the IBM Tivoli Key Lifecycle Manager
Installation and Configuration Guide

Audit.eventQueue.max
Syntax

Audit.eventQueue.max=number_events

Usage

Used to set the maximum number of event objects to be held in the memory
queue. This parameter is optional but recommended. The default is zero.
Audit.eventQueue.max=0

Audit.handler.file.directory
Syntax

Audit.handler.file.directory=directoryName

Usage

This parameter is used to indicate what directory the audit record files are to be
written to. This parameter must specify a directory in the UNIX System Services
file system. If the directory does not exist, the Security Key Lifecycle Manager for
z/OS attempts to create the directory. If not successful, however, the Security Key
Lifecycle Manager for z/OS does not start. It is best that the directory exists before
running the Security Key Lifecycle Manager for z/OS. The user ID under which
the Security Key Lifecycle Manager for z/OS runs must have write access to the
directory specified.

To set the directory to /var/isklm/isklm1/audit:
Audit.handler.file.directory=/var/isklm/isklm1/audit

Audit.handler.file.size
Syntax

Audit.handler.file.size=sizeInKiloBytes

Usage

This parameter is used to indicate the size limit upon which an audit file is closed
and a new audit file is then written to. The actual size of the audit file can exceed

Chapter 7. Audit Records 119

this value by several bytes as the file is closed after the size limit has been
exceeded.

To set the maximum file size to roughly 2 megabytes, enter:
Audit.handler.file.size=2000

Audit.handler.file.name
Syntax

Audit.handler.file.name=fileName

Usage

Use this parameter to specify the base file name within the specified audit
directory to use as the base name in creating audit log files. This parameter must
contain only the base file name and not the fully qualified path name. The full
name of the audit log file has the value corresponding to the time upon which the
file was written appended to this name.

Consider an example where the Audit.handler.file.name value is set to isklm.log.
The full name of the file is similar to: isklm.log.2315003554. Use the appended
string to determine the order that the audit log files were created. Higher number
values indicate newer audit log files.

The following example sets the base name to isklm.log:
Audit.handler.file.name=isklm.log

Audit.handler.file.multithreads
Syntax

Audit.handler.file.multithreads={yes|true|no|false}

Usage

If specified as true, a separate thread is used to write the event data to the audit
log. This setting allows the current thread of execution (operation) to continue
without waiting for the write to the audit log to complete. Use of multiple threads
is the default behavior.

An example setting the base name to true is:
Audit.handler.file.multithreads=true

Audit.handler.file.threadlifespan
Syntax

Audit.handler.file.threadlifespan=timeInSeconds

Usage

This parameter is used to specify the maximum time a thread is expected to
require in order to write an audit log entry. This value is used during cleanup
processing to allow threads to complete their work before interrupting them. If a
background thread has not completed its work within the time allotted by the

120 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

threadlifespan parameter, then upon cleanup processing, the thread is
interrupted.

To set the expected time a thread to write to the audit log as 10 seconds, specify:
Audit.handler.file.threadlifespan=10

Configuring the System Management Facilities Audit log
Before you begin

Configure Security Key Lifecycle Manager for z/OS to use the System
Management Facilities (SMF) auditing log. Use the SMF audit log to record
activities such as authentication events and data synchronization. This task
requires:
v IBMSKLM.jar
v Your configured keystore file. For example: isklm.jck. For more information

about keystores, see “Managing Keystores” on page 38.
v Your configured configuration file. For example: ISKLMConfig.properties.zos.
v CKLJSMF which is provided in the SCKLSAMP library. Use it to unload SMF

type 83 audit records from the data set.
v Optional: Update the directories for the Keygroups.xml file and Device table.

Note: If the SMF auditing log is not configured but the auditing feature is enabled,
a simple flat file is used for auditing.

Procedure
1. Run these RACF commands as root:

RDEFINE FACILITY IRR.RAUDITX UACC(NONE)
PERMIT IRR.RAUDITX CLASS(FACILITY) ID(<userid>) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

2. Copy the CKLJSMF to a JCL library, for example to USER.PROCLIB(SMF2LOG).
3. Create a volume as stated in the JCL file from the Interactive System

Productivity Facility (ISPF) menu.
a. Select Primary Option > Utilities (option 3).
b. Select Data Set (option 2) from Utility Selection.
c. Specify the data set at Other Partitioned, Sequential or VSAM Data Set.

For example: USER1.PRIV.SMFOUT
d. Type A at Option to allocate the data set.
e. In Allocate New Data, use the following options for the volume size:

v Record format: VB

v Record length: 12288

v Blocksize: 24576

4. Create the file SMFPRM01 in USER.PARMLIB by copying the existing configuration
of the PARMLIB dataset to the new configuration property.
a. Select Primary Option > Utilities (option 3).
b. Select Move/Copy (option 3) from Utility Selection.
c. Specify the name of the data set at From Other Partitioned, or Sequential

Data Set. For example: ’SYS1.PARMLIB(SMFPRM00)’
d. Type C at Option to copy the data set.

Chapter 7. Audit Records 121

e. Specify the name of the data set you want to copy at Other Partitioned,
Sequential or VSAM Data Set, or z/OS UNIX file. For example:
’USER.PARMLIB(SMFPRM01)’

5. Edit the system type to accommodate SMF Type 83.
ACTIVE
NOPROMPT
DSNAME(SYS1.MAN1,SYS1.MAN2,SYS1.MAN3)
REC(PERM)
MAXDORM(3000)
STATUS(010000)
JWT(2400)
SID(&SMFID.)
LISTDSN
MEMLIMIT(NOLIMIT)
SYS(TYPE(4,5,28,30,37,38,39,70,71,72,73,74,75,76,77,78,83))
SYS(NODETAIL)
SYS(NOINTERVAL)
SYS(EXITS(IEFACTRT,IEFUJI,IEFU83,IDFU84,IEFU85,IEFUTL,IEFU29,EIFUJV))
SUBSYS(STC,EXITS(IEFACTRT,IEFUJI,IEFU29,IEFU83,IEFU84,IEFU85)

6. Update the configuration file to use the SMF adapter in
ISKLMConfig.properties.zos by entering this parameter:
Audit.handler.class=com.ibm.ltkm.audit.smf.SMFSecurityEventHandler

7. Set the SMF parameter to start logging SMF records using the configuration
you created. Use the following commands:

z/OS console
SET SMF = 01

ISPF ISPF -> s.log -> /SET SMF=01

8. Launch Security Key Lifecycle Manager for z/OS.

z/OS console
Use the command: S ISKLM

Unix System Services (formerly known as OMVS)
Use the java com.ibm.ltklm.ISKLMServer
ISKLMConfig.properties.zos command.

9. Run the CKLJSMF to unload the audit records in ISPF.
a. Select Primary Option > Library (option 1).
b. Specify the name of the file where the audit records are unloaded at Other

Partitioned, Sequential or VSAM Data Set, or z/OS UNIX file. For
example: USER.PROCLIB(SMF2LOG)

c. Specify submit in the command field.
10. View the audit record to verify that the system logs activities.

a. Select Primary Option > Library (option 1).
b. Specify the name of the file where the audit records are unloaded at Other

Partitioned, Sequential or VSAM Data Set, or z/OS UNIX file. For
example: ’USER1.PRIV.SMFOUT’

Results

You should see that the audit record logs records activities such as authentication
events and data synchronization.

122 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Audit Record Format
All audit records use a similar output format which is described here. All audit
records contain some common information including timestamp and record type,
along with information specific to the audit event which occurred. The general
format for audit records is shown here:
AuditRecordType:[

timestamp=timestamp
Attribute Name=Attribute Value
...
]

Each record spans multiple lines in the file. The first line of the record beginning
with the audit record type beginning at the first character on the line, followed by
a colon (;) and an opening left bracket ([). Subsequent lines associated with the
same audit record are indented two (2) spaces to assist in readability of the log
records. The last line for a single audit record contains a closing right bracket (])
indented two (2) spaces. The number of lines for each audit record varies. The
variation is based on the audit record type and the additional attribute information
that is provided with the audit record.

The timestamp for the audit records is based on the system clock of the system on
which the Security Key Lifecycle Manager for z/OS is running. If these records are
correlated based on timestamp with events occurring on other systems, some type
of time synchronization can be used. The time synchronization ensures that the
clocks of the various systems in the environment are synchronized to an acceptable
level of accuracy.

Audit points
The Security Key Lifecycle Manager for z/OS can write audit records, based on
configuration, for many events that occur during the processing of requests. In this
section, the set of events that can be audited is described along with the audit
record configuration category, which must be enabled in order for these audit
records to be written to the audit files (see Table 12).

Table 12. Audit record types that the Security Key Lifecycle Manager for z/OS writes to audit
files

Audit Record
Type Audit Type Description

Authentication authentication Used to log authentication events

Data
Synchronization

data_synchronization Used to log data synchronization
processing

Runtime runtime Used to log various important
processing events which occur within
the Security Key Lifecycle Manager for
z/OS server while handling requests

Resource
Management

resource_management Used to log changes to how resources
are configured to the Security Key
Lifecycle Manager for z/OS

Configuration
Management

configuration_management Used to log changes to the
configuration of the Security Key
Lifecycle Manager for z/OS server

Chapter 7. Audit Records 123

Audit Record Attributes
The following lists show the attributes available to each of the audit record types.

Authentication event

The format for these records is:
Authentication event:[

timestamp=timestamp
event source=source
outcome=outcome
event type=SECURITY_AUTHN
message=message
authentication type=type
users=users
]

The message value only appears if information for it is available.

Data synchronization event

The format for these records is:
Data synchronization event:

timestamp=timestamp
event source=source
outcome=outcome
event type=SECURITY_DATA_SYNC
message=message
action=action
resource=resource
user=user
]

The message and user values only appear if information for them is available.

Runtime event

The format for these records is:
Runtime event:

timestamp=timestamp
event source=source
outcome=outcome
event type=SECURITY_RUNTIME
message=message
resource=resource
action=action
user=user
]

The message and user values only appear if information for them is available.

Resource management event

The format for these records is:
Resource management event:

timestamp=timestamp
event source=source
outcome=outcome
event type=SECURITY_MGMT_RESOURCE
message=message

124 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

action=action
user=user
resource=resource
]

The message value only appears if information for it is available.

Configuration management event

The format for these records is:
Configuration management event:

timestamp=timestamp
event source=source
outcome=outcome
event type=SECURITY_MGMT_CONFIG
message=message
action=action
command type=type
user=user
]

The message value only appears if information for it is available.

Audited Events
Table 13 describes the events that cause audit records to be created. The table lists
the audit record type that is logged when this event occurs.

Table 13. Audit record types by audited event

Audited Event Audit Record Type

User successfully authenticated authentication

User authentication failed authentication

Data successfully sent to other Security Key
Lifecycle Manager for z/OS

data_synchronization

Error sending data to other Security Key
Lifecycle Manager for z/OS

data_synchronization

sync command processed data_synchronization

Error processing sync command data_synchronization

Command line processing started runtime

exit command received runtime

Unknown command entered runtime

Message received from drive runtime

Error processing message from drive runtime

Error from message received from drive runtime

Error updating device table with information
received from drive

runtime

Error retrieving information from device
table

runtime

Error retrieving information from keystore runtime

Error processing certificate from keystore runtime

Error finding private key from keystore runtime

Error computing cryptographic values runtime

Chapter 7. Audit Records 125

Table 13. Audit record types by audited event (continued)

Audited Event Audit Record Type

Message exchange processed successfully runtime

Message processing started runtime

Command line processing started runtime

Problem found using cryptographic services runtime

New drive discovered runtime

Error configuring drive to device table runtime

Successfully started processing messages
from drive

runtime

Received and processed stopisklm command runtime

Drive removed from device table resource_management

Error removing drive from device table resource_management

Device table import successful resource_management

Error importing device table resource_management

Device table export successful resource_management

Error exporting device table resource_management

listcerts command successful resource_management

Drive add to device table successful resource_management

Error adding drive to device table resource_management

listdrives command successful resource_management

Error processing listdrives command resource_management

Device table modify successful resource_management

Error modifying device table resource_management

Successful KeyStore open resource_management

Error opening KeyStore resource_management

Configuration property changed configuration_management

Error changing configuration property configuration_management

Configuration property deleted configuration_management

Error deleting configuration property configuration_management

Configuration import successful configuration_management

Error importing configuration configuration_management

Configuration export successful configuration_management

Error exporting configuration configuration_management

listconfig command successful configuration_management

126 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Chapter 8. Using Metadata

The Security Key Lifecycle Manager for z/OS must be configured to create an
XML file that captures vital information as data is being encrypted and written to
tape. This file can be queried by volume serial number to display the alias or key
label that was used on the volume. Conversely, the file can be queried by alias to
display all volumes associated with that key label/alias.

Note: If you do not configure a metadata file, the Security Key Lifecycle Manager
for z/OS does not start.

As encryption processing is performed, the Security Key Lifecycle Manager for
z/OS collects the following data:
v Drive Serial Number
v Drive WorldWideName
v Creation Date
v Key Alias 1
v Key Alias 2
v DKi
v VolSer

When the collected data reaches a certain limit, it is written to an XML file. The
default limit, which can be set in the Security Key Lifecycle Manager for z/OS
properties file (ISKLMConfig.properties.zos), is 100 records. Once the file is written,
it can be queried as long as the Security Key Lifecycle Manager for z/OS is
running. To prevent the file from growing too large, it is automatically rolled over
to a new file after a maximum file size is reached. The default maximum file size
for rollover, which can also be set in the Security Key Lifecycle Manager for z/OS
properties file, is 1 MB. Only a current and a previous file version is saved. The
values to set in the Security Key Lifecycle Manager for z/OS configuration
properties file are:

Audit.metadata.file.name
Name of XML file where metadata is saved. This configuration is required.

Audit.metadata.file.size
The maximum file size. This is specified in kilobytes, before rolling the file
over from current to previous version. This configuration is optional. The
default is 1024 (1MB).

Audit.metadata.file.cachecount
The number of records to be cached before writing the metadata file. This
configuration is optional. The default is 100.

XML File Format

The file contains records in the following format.

<KeyUsageEvent>
<DriveSSN>FVTDRIVE0000</driveSSN> -Drive Serial Number
<VolSer>TESTER</volSer> -Volume Serial
<DriveWWN>57574E414D453030</driveWWN> -drive WWN
<keyAlias2>cert2</keyAlias2> -Key Alias1

© Copyright IBM Corp. 2006, 2011 127

<keyAlias1>cert1</keyAlias1> - keyAlias2
<dateTime>Tue Feb 20 09:18:07 CST 2007</dateTime> - creation date
</KeyUsageEvent>

Note: For LTO Ultrium 4 and LTO Ultrium 5 drives there is only
<keyAlias1></keyAlias1> record. The DKi is not recorded.

Querying the metadata XML file

Use the ISKLMDataParser tool to query the metadata file. This tool parses the
XML file using Document Object Model (DOM) techniques and cannot be run from
the Security Key Lifecycle Manager for z/OS command-line interface. It is invoked
as follows:

java com.ibm.ltklm.tools.ISKLMDataParser -filename full_path_to_metadata_file
{-volser volser | -keyalias alias}

metadata_path
This path is the same directory path specified for the metadata file in
Audit.metadata.file.name in the ISKLMConfig.properties.zos file.

-filename
filename is required and must be the name of the XML metadata file. The name
usually matches the name specified in theAudit.metadata.file.name property in
the ISKLMConfig.properties.zos file.

-volser
The volume serial number of the tape cartridge you are searching for in the
XML file. Either -volser or -keyalias must be specified.

-keyalias
The key label or alias you are searching for in the XML file. Either -volser or
-keyalias must be specified.

Example

The metadata file name property in ISKLMConfig.properties.zos is set to a value
of metadata. The file is located in your local directory where the Security Key
Lifecycle Manager for z/OS runs. The following command would filter (display)
only the XML records related to volser 72448:
<jvm_path>/bin/java com.ibm.ltklm.tools.ISKLMDataParser -filename metadata -volser 72448

The output would be formatted as follows:

Table 14. Metadata Query Output Format

keyalias1 keyalias2 volSer dateTime driveSSN dki

cert1 cert2 72448 Wed Mar 14 10:31:32 CDT 2007 FVTDRIVE0004

Recovering from a corrupted metadata file

The Security Key Lifecycle Manager for z/OS metadata file can become corrupted
if the Security Key Lifecycle Manager for z/OS is improperly shutdown. It can also
be corrupted if the system where the Security Key Lifecycle Manager for z/OS is
running crashes. Improper editing or modification of the metadata file can also
corrupt it. The corruption is unnoticed until the ISKLMDataParser parses the
metadata file. The ISKLMDataParser can fail with an error like the following:

128 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

[Fatal Error] EKMData.xml:17:16: The end-tag for element type "KeyUsageEvent"
must end with a ’>’ delimiter.
org.xml.sax.SAXParseException: The end-tag for element type "KeyUsageEvent"
must end with a ’>’ delimiter.
at org.apache.xerces.parsers.DOMParser.parse(Unknown Source)
at org.apache.xerces.jaxp.DocumentBuilderImpl.parse(Unknown Source)
at javax.xml.parsers.DocumentBuilder.parse(Unknown Source)
at com.ibm.ltklm.tools.ISKLMDataParser.getData(ISKLMDataParser.java:80)
at com.ibm.ltklm.tools.ISKLMDataParser.viewData(ISKLMDataParser.java:143)
at com.ibm.ltklm.tools.ISKLMDataParser.main(ISKLMDataParser.java:337)

If this error occurs, it is due to a missing XML ending tag for an element. The
Security Key Lifecycle Manager for z/OS metadata file can be recovered to allow
the ISKLMDataParser to parse the file again.
1. Make a backup copy of the Security Key Lifecycle Manager for z/OS metadata

file.
2. Edit the Security Key Lifecycle Manager for z/OS metadata file.
3. In XML, there should be an initial tag and a corresponding ending tag for each

piece of data or event.
v Some examples of an initial tag:

– <KeyUsageEvent>
– <driveSSN>
– <keyAlias1>

v Some examples of an ending tag:
– </KeyUsageEvent>
– </driveSSN>
– </keyAlias1>

4. Scan the file and look for unmatched tags. The error message from the
ISKLMDataParser lists which tag is missing its ending tag.

5. When an unmatched tag is found, temporarily delete the event or add the
necessary tags to complete the event.
v The following excerpt from a Security Key Lifecycle Manager for z/OS

metadata file shows a first KeyUsageEvent that has no ending tag:
<KeyUsageEvent>
<driveSSN>001310000109</driveSSN>
<volSer> </volSer>
<driveWWN>5005076312418B07</driveWWN>
<keyAlias1>key00000000000000000F</keyAlias1>
<dki>6B657900000000000000000F</dki>
<dateTime>Thu Aug 30 09:50:53 MDT 2007</dateTime>
<KeyUsageEvent>
<driveSSN>001310000100</driveSSN>
<volSer> </volSer>
<driveWWN>5005076312418ABB</driveWWN>
<keyAlias1>key000000000000000000</keyAlias1>
<dki>6B6579000000000000000000</dki>
<dateTime>Thu Sep 06 16:49:39 MDT 2007</dateTime>
</KeyUsageEvent>

Adding a </KeyUsageEvent> between the lines <dateTime>Thu Aug 30
09:50:53 MDT 2007</dateTime> and <KeyUsageEvent> would complete the
first <KeyUsageEvent>.

Repairing the file corruption allows the ISKLMDataParser to successfully parse the
data.

Chapter 8. Using Metadata 129

130 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Appendix A. Sample Files

Sample files are provided to guide you in using Security Key Lifecycle Manager
for z/OS.

Sample startup daemon script

Attention: It is impossible to overstate the importance of preserving your
keystore data. You will not be able to decrypt your encrypted tapes if you do not
have access to your keystore. Save your keystore and password information.

z/OS Platforms

Create or edit contents as shown in the example. The text in italics are for
comment purposes only and do not have to be entered. Review the installation
documentation for the z/OS Java product. The documentation contains additional
guidelines, annotated samples, and step by step installation instructions for the
JZOS launcher function.
//ISKLM PROC JAVACLS=’com.ibm.jzosekm.ISKLMConsoleWrapper’ ,
// ARGS=, < Args to Java class
// LIBRARY=’SYS1.SIEALNKE’, < STEPLIB FOR JVMLDM module
// VERSION=’14’, < JVMLDM version: 14, 50, 56
// LOGLVL=’+T’, < Debug LVL: +I(info) +T(trc)
// REGSIZE=’0M’, < EXECUTION REGION SIZE
// LEPARM=’’
//***
//*
//* Stored procedure for executing the JZOS Java Batch Launcher
//* Specifically, to execute the Enterprise Key Manager under JZOS
//*
//***
//ISKLM EXEC PGM=JVMLDM&VERSION,REGION=®SIZE,
// PARM=’&LEPARM/&LOGLVL &JAVACLS &ARGS’
//STEPLIB DD DSN=&LIBRARY,DISP=SHR
//SYSPRINT DD SYSOUT=* < System stdout
//SYSOUT DD SYSOUT=* < System stderr
//STDOUT DD SYSOUT=* < Java System.out
//STDERR DD SYSOUT=* < Java System.err
//CEEDUMP DD SYSOUT=*
//ABNLIGNR DD DUMMY
//***
//* The following member contains the JVM environment script
//***
//STDENV DD DSN=USER.PLX4.PROCLIB(ISKLM2ENV),DISP=SHR
//*

Sample server configuration properties files
The following is a sample properties file with all of the keystore entries pointing to
the same software keystore:
Admin.ssl.keystore.name = /keylifecyclemanager/testkeys
Admin.ssl.keystore.type = jceks
Admin.ssl.truststore.name = /keylifecyclemanager/testkeys
Admin.ssl.truststore.type = jceks
Audit.event.outcome = success,failure
Audit.event.types = all
Audit.eventQueue.max = 0

© Copyright IBM Corp. 2006, 2011 131

Audit.handler.file.directory = /keylifecyclemanager/audit
Audit.handler.file.name = kms_audit.log
Audit.handler.file.size = 10000
Audit.metadata.file.name = /keylifecyclemanager/metafile.xml
config.drivetable.file.url = FILE:///keylifecyclemanager/drivetable
config.keystore.file = /keylifecyclemanager/testkeys
config.keystore.provider = IBMJCE
config.keystore.type = jceks
fips = Off
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = /keylifecyclemanager/testkeys
TransportListener.ssl.keystore.type = jceks
TransportListener.ssl.port = 443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = /keylifecyclemanager/testkeys
TransportListener.ssl.truststore.type = jceks
TransportListener.tcp.port = 3801

This is a sample properties file with all of the keystore entries pointing to a
different keystore. Entries in bold differ from the first sample properties file above.
Admin.ssl.keystore.name = /keylifecyclemanager/adminkeys.jceks
Admin.ssl.keystore.type = jceks
Admin.ssl.truststore.name = /keylifecyclemanager/admintrustkeys
Admin.ssl.truststore.type = jceks
Audit.event.outcome = success,failure
Audit.event.types = all
Audit.eventQueue.max = 0
Audit.handler.file.directory = /keylifecyclemanager/audit
Audit.handler.file.name = kms_audit.log
Audit.handler.file.size = 10000
Audit.metadata.file.name = /keylifecyclemanager/metafile.xml
config.drivetable.file.url = FILE:///keylifecyclemanager/drivetable
config.keystore.file = /keylifecyclemanager/drive.keys
config.keystore.provider = IBMJCE
config.keystore.type = jceks
fips = Off
TransportListener.ssl.ciphersuites = JSSE_ALL
TransportListener.ssl.clientauthentication = 0
TransportListener.ssl.keystore.name = /keylifecyclemanager/sslkeys
TransportListener.ssl.keystore.type = jceks
TransportListener.ssl.port = 443
TransportListener.ssl.protocols = SSL_TLS
TransportListener.ssl.truststore.name = /keylifecyclemanager/ssltrustkeys
TransportListener.ssl.truststore.type = jceks
TransportListener.tcp.port = 3801

132 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Appendix B. Configuration Properties Files

The Security Key Lifecycle Manager for z/OS requires a configuration file. This file
is treated and parsed as a Java.util.Properties load file, which imposes certain
restrictions on the format and specification of properties:
v Configuration properties are recorded one-per-line. The value(s) for a given

property extend to the end of the line.
v Property values, such as passwords, that contain spaces need not be enclosed in

quotation marks.
v Keystore passwords must not be greater than 127 characters in length.
v Accidental whitespace at the end of a line may be interpreted as part of a

property value.

Server configuration properties file
This section describes the properties in the Security Key Lifecycle Manager for
z/OS configuration file. The order of property settings in the file does not matter.
Comments can be used in the file. To add a comment, use a “#” in the first column
of a line. On z/OS, “#” is expected to be in IBM-1047 code page, for example X'7B'.

Note: Changes made to the ISKLMConfig.properties.zos file can be lost at
shutdown. Ensure that the Security Key Lifecycle Manager for z/OS server is not
running before editing configuration properties. To stop the Security Key Lifecycle
Manager for z/OS server issue the stopisklm command from the console where
Security Key Lifecycle Manager for z/OS was started. If you are using JZOS use
the S ISKLM command. Your changes are activated when the Security Key
Lifecycle Manager for z/OS server is restarted.

Admin.ssl.ciphersuites = value
Specifies the cipher suites to be used for communication between the
Security Key Lifecycle Manager for z/OS servers. A cipher suite describes
the cryptographic algorithms and handshake protocols Transport Layer
Security (TLS) and Secure Sockets Layer (SSL) use for data transfer.

Required
Optional.

Values
Possible values are any cipher suites supported by IBMJSSE2.

Default
JSSE_ALL

Admin.ssl.keystore.name = value
This is the name of the database of key pairs and certificates used for
Secure Socket Layer client operations. They are used in operations such as
sync commands between the Security Key Lifecycle Manager for z/OS
Servers. In a sync operation, the certificate that the Secure Sockets client
presents to the Secure Sockets server comes from this keystore.

Required
Optional. Used only with sync command. Defaults to value of
config.keystore.file property.

© Copyright IBM Corp. 2006, 2011 133

Admin.ssl.keystore.password = password
Password to access Admin.ssl.keystore.name

Required
Optional. If not supplied, can be prompted for on start of the
Security Key Lifecycle Manager for z/OS. The value for this
property is obfuscated for additional security and the stanza name
itself in the properties file is replaced with a new stanza that is
named Admin.ssl.keystore.password.obfuscated.

Admin.ssl.keystore.type = value
Type of keystore used.

Required
Optional.

Default
jceks

Admin.ssl.protocols = value
Security protocols.

Required
Optional.

Values
SSL_TLS | SSL | TLS

Default
SSL_TLS

Admin.ssl.timeout = value
Specifies how long a socket waits for a read() before throwing a
SocketTimeoutException.

Required
Optional.

Values
Specified in minutes. 0 means no timeout

Default
1

Admin.ssl.truststore.name = value
This is the name of the database file used to check the trust of the Secure
Sockets Server certificate that the server presents to the Secure Sockets
client.

Required
Optional. Used only with sync command. Defaults to value of
config.keystore.file property.

Admin.ssl.truststore.type = value
Type of keystore used.

Required
Optional.

Default
jceks

Audit.event.outcome = value
Only audit events that resulted in the specified outcome are recorded

134 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Required
Yes.

Values
success | failure. Both can be specified separated by comma or
semicolon.

Default
success

Audit.handler.class = value
Specifies the class used to log audit data.

Required
Optional.

Default
com.ibm.ltklm.audit.file.SimpleFileSecurityEventHandler

Audit.event.Queue.max = 0
The maximum number of event objects in the audit memory queue before
they are flushed to file.

Required
Optional.

Values
0 - ? (0 means flush immediately.)

Default
0

Audit.event.types = value
Only audit events that resulted in the specified outcome are recorded

Required
Yes.

Values
all |data synchronization | runtime | configuration management |
resource management. Multiple values can be specified separated
by a comma or semicolon.

Default
all

Audit.handler.file.directory = ../audit
Directory where Audit.handler.file.name is located

Required
Optional.

Audit.handler.file.multithreads = value
Specifies if the audit handler dispatches separate threads to process audit
records.

Required
Optional.

Values
true | false

Default
true

Appendix B. Configuration Properties Files 135

Audit.handler.file.name = kms_audit.log
File name where audit entries are set to be logged.

Required
Yes.

Audit.handler.file.size = 100
Size to which Audit.Handler.file.name grows to before it begins to
overwrite

Required
Optional.

Values
0 - ? (specified in kilobytes.)

Default
100

Audit.handler.file.threadlifespan = value
Limits the lifetime of an audit record processing thread. Only useful if
audit.handler.file.multithreads= true.

Required
Optional.

Values
Specified in milliseconds.

Default
10000

Audit.metadata.file.cachecount = 100
Specifies the number of records to store in memory before writing the
metadata file.

Required
Optional.

Default
100

Audit.metadata.file.name = value
Specifies the name of the XML file where metadata records are to be saved.

Required
Yes.

Audit.metadata.file.size = 1024
Specifies the maximum file size, specified in KB, the XML metadata file can
achieve before the file is closed and a new file is started. Only a current
and previous version of the file is saved.

Required
Optional.

Default
1024

cert.valiDATE = value
Specifies whether to perform certificate date validation. A value of true
specifies that the dates of notBefore and notAfter certificates are used to
validate the certificate. Any certificate with a date range falling outside
these Java date specifications cannot be used for encryption. They can
however still be used to decrypt, or read, encrypted tapes. If this property

136 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

is set to a value of false (or any other value, or left unspecified), no other
certificate date validation is performed. This property only applies to
TS1120, TS1130, TS1140 and DS8000. It is not used for LTO.

Required
Optional.

Values
true | false

Default
false

config.drivetable.file.url = FILE:../filedrive.table
File containing information concerning the tape drive such as serial
number, and certificates.

Required
Yes.

config.keygroup.xml.file = value
Specifies the name of the XML file where individual aliases are stored by
key groups. (Not used for TS1120, TS1130, TS1140, or DS8000.)

Required
Optional.

config.keystore.file = value
Specifies the keystore to be used.

Required
Yes.

config.keystore.password = password
Password to access config.keystore.file. The value for this property is
obfuscated for additional security and the stanza name itself in the
properties file is replaced with a new stanza that is named
config.keystore.password.obfuscated.

Required
Optional. If not supplied, can be prompted for on start of the
Security Key Lifecycle Manager for z/OS.

config.keystore.provider = IBMJCE

Required
Optional.

config.keystore.type = jceks

Required
Optional.

Default
jceks

debug = value
Enables debug for the specified Security Key Lifecycle Manager for z/OS
component.

Note: The debug log should only be turned on at the direction of IBM
service while debugging a specific problem and must only be turned on
for a limited time. The debug log captures large amounts of data which
might fill up the file system and cause an outage.

Appendix B. Configuration Properties Files 137

Required
Optional.

Values
all | audit | server | drivetable | config | admin | transport |
logic | keystore | console | none. Can take multiple values
separated by commas.

Default
none

debug.output = value
Routes debug output to specified location.

Required
Optional.

Values
simple_file | console.

debug.output.file = debug
Path and filename where debug output is to be written.

Required
Optional. Required when debug.output = simple_file. Path to file
must exist.

drive.acceptUnknownDrives = value
Automatically adds new drive contacting the Security Key Lifecycle
Manager for z/OS to device table.

Required
Optional.

Values
true | false

Default
false

Note: When used with a valid drive.default.alias1 and drive.default.alias2
setting for TS1120, TS1130 and TS1140 devices, or used with a valid
symmetricKeySet for LTO devices, this setting allows tape drives that
connect to the Security Key Lifecycle Manager for z/OS to be added and
operational without an administrator intervention.

ds8k.acceptUnknownDrives=value
Automatically adds new DS8000 contacting the Security Key Lifecycle
Manager for z/OS to device table.

Required
Optional.

Values
true | false

Default
false

drive.default.alias1 = value
Specifies a TS1120, TS1130, or TS1140 drive default alias if one is not
specified in device table. This value can be different from the value
specified for drive.default.alias2 or the same. (Not used for LTO and
DS8000.)

138 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Required
Optional.

drive.default.alias2 = value
Specifies a TS1120, TS1130, or TS1140 drive default alias if one is not
specified in device table. This value can be different from the value
specified for drive.default.alias1 or the same. (Not used for LTO and
DS8000.)

Required
Optional.

fips = value
Federal Information Processing Standard.

Required
Optional.

Values
on | off

Default
off

Note: Do not use hardware-based keystore types when the fips parameter
is set on.

maximum.threads = 200
Maximum number of threads the Security Key Lifecycle Manager for z/OS
can create.

Required
Optional.

requireHardwareProtectionForSymmetricKeys = value
Specifies whether symmetric keys need to be protected on z/OS if
hardware crypto is used.

Required
Optional.

Values
true | false

Default
false

symmetricKeySet = {GroupID | keyAliasList [, keyAliasList,]}
Specifies the symmetric key aliases and key groups to be used for LTO
Ultrium 4 and LTO Ultrium 5 tape drives. (Not used for TS1120, TS1130,
TS1140 or DS8000.)

Required
Optional. Applies to LTO Ultrium 4 and LTO Ultrium 5 tape
cartridges only.

Values

Specify one value for GroupID or one or more values for
keyAliasList.

GroupID specifies a key group name to prime the list of symmetric
keys and serve as default when no alias is specified for the tape
drive. The GroupID must match an existing key group ID in the

Appendix B. Configuration Properties Files 139

KeyGroups.xml file. If not, a KeyManageException is returned. If
more than one GroupID is specified, a KeyManagerException is
returned. When you specify a valid GroupID, the last key used in
the Key Groups XML is tracked and a random selection for the
next key is used each time getKey is called from the
KeyGroups.xml for the list of symmetric keys. Each specification of
keyAliasList contains either a value for keyAlias or keyAliasRange.

keyAlias specifies the Backus-Naur Form (BNF) for a name or alias
of a symmetric key in the keystore up to 12 characters long or a
sequentialKeyID exactly 21 characters long.

keyAliasRange specifies a sequentialKeyID and hexadecimal digits
up to 18 characters, separated by a hyphen (-). If 18 characters are
specified the first two characters must be 00. Must be specified on
one line and contain no cr-lf.

GroupID specifies the name of a group of aliases.

Example
symmetricKeySet = KMA0238ab34,KMB0000034acd2345678a,THZ001-
FF This instructs the Security Key Lifecycle Manager for z/OS to
use aliases KMA0238ab34, KMB0000034acd2345678a. It uses aliases
range of THZ000000000000000001 through
THZ0000000000000000FF when serving keys to LTO Ultrium 4 and
LTO Ultrium 5 tape drives. These keys must exist in the keystore
specified by config.keystore.file in the properties file.

sync.action = value
Specifies what action to be taken with the data during an auto synchronize.

Required
Optional.

Values
rewrite | merge

Default
merge

Note: merging configuration information is the same as rewriting it.

sync.ipaddress = ip_addr:sslport
Specifies the IP address and port of the remote Security Key Lifecycle
Manager for z/OS to auto synchronize.

Required
Optional. If this property is unspecified or specified incorrectly, the
sync function is disabled.

Values
IP address of remote server:SSL port number

sync.timeinhours = value
Specifies how many hours to wait before doing an auto synchronize with a
remote Security Key Lifecycle Manager for z/OS.

Required
Optional.

Values
Specified in hours.

140 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Default
24

sync.type = value
Specifies what data to auto synchronize.

Required
Optional.

Values
config | drivetab | all

Default
drivetab

TransportListener.ssl.ciphersuites = JSSE_ALL
Cipher suites to be used for communication between Security Key Lifecycle
Manager for z/OS servers. A cipher suite describes the cryptographic
algorithms and handshake protocols Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) use for data transfer.

Required
Optional.

Values
Values – any cipher suites supported by IBMJSSE2.

TransportListener.ssl.clientauthentication = 0
SSL authentication needed for communication between Security Key
Lifecycle Manager for z/OS servers.

Required
Optional.

Values

0 - no client authentication (default)
1 - server wants to do client authentication with the client
2 - the server must do client authentication with the client

TransportListener.ssl.keystore.name = value
The name of the database used by the Security Key Lifecycle Manager for
z/OS Server to hold the certificate and private keys for the Secure Socket
Server. This certificate is given to the Secure Socket client for authentication
and trust checking. This keystore is also used by the Security Key Lifecycle
Manager for z/OS Client to talk to the Security Key Lifecycle Manager for
z/OS Server. It acts as a Secure Sockets client.

Required
Yes.

TransportListener.ssl.keystore.password = password
Password to access TransportListener.ssl.keystore.name. The value for this
property is obfuscated for additional security and the stanza name itself in
the properties file is replaced with a new stanza that is named
TransportListener.ssl.keystore.password.obfuscated.

Required
Optional.

TransportListener.ssl.keystore.type = jceks

Required
Optional.

Appendix B. Configuration Properties Files 141

Values

JCEKS | JCECCAKS |

JCERACFKS | JCECCARACFKS

TransportListener.ssl.port = value
Port the Security Key Lifecycle Manager for z/OS server listens on for
requests from other Security Key Lifecycle Manager for z/OS Servers.

Required
Yes.

Values
Port number, 443 for example. The value must match the
TransportListener.ssl.port property in the configuration properties
file.

TransportListener.ssl.protocols = SSL_TLS
Security protocols

Required
Optional.

Values
SSL_TLS (default) | SSL | TLS

TransportListener.ssl.timeout = 10
Specifies how long socket waits on a read() before throwing a
SocketTimeoutException.

Required
Optional.

Value Specified in minutes.

Default
10

TransportListener.ssl.truststore.name = value
The name of the database of public keys and signed certificates used to
verify the identities of other clients and servers. If the
TransportListener.ssl.clientauthentication property is not set to the default
value of 0, then the Security Key Lifecycle Manager for z/OS Server, acting
as the Secure Socket Server, must authenticate the client by using this file.
This truststore is also used by the Security Key Lifecycle Manager for z/OS
Client. It is used to talk to the Security Key Lifecycle Manager for z/OS
Server and act as a Secure Sockets client.

Required
Yes.

TransportListener.ssl.truststore.type = jceks

Required
Optional.

Values

JCEKS | JCECCAKS | JCERACFKS | JCECCARACFKS

TransportListener.tcp.port = value
Port the Security Key Lifecycle Manager for z/OS server listens on for
requests from tape drives. The default TCP port number is 3801.

142 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Required
Yes.

Values
Port number, 10 for example.

TransportListener.tcp.timeout = value
Specifies how long a socket waits on a read() before throwing a
SocketTimeoutException.

Required
Optional.

Values
Specified in minutes. 0 means no timeout.

Default
10

useSKIDefaultLabels = value
Specifies whether the Security Key Lifecycle Manager for z/OS creates
Externally Encrypted Data Keys (EEDKs) for encrypted TS1120,
TS1130,TS1140, or DS8000. It specifies if those EEDKS are created using the
X509 Subject Key Identifier (SKI) hash instead of the label when a default
alias, either from the device table or configuration file, is used. When a
value of true is specified, the EEDKs are created using the SKI hash on the
certificate. If this property is set to a value of false (or any other value, or
left unspecified), the default label of a certificate is used.

Note: This property has no function for LTO tapes.

Required
Optional.

Values
true | false

Default
false

zOSCompatibility = value
The zOSCompatibility flag is used to identify the crypto capabilities of the
z/OS system being used. This flag is typically used when hardware
cryptography is being used on z/OS, ICSF. At one point, ICSF did not
support the AES algorithm that Security Key Lifecycle Manager for z/OS
uses and this flag was a work around for that issue. However, ICSF does
support AES now, so this flag does not need to be used anymore.

Note: If you need to have the zOSCompatibility flag turned on one
system, make sure that you have it turned on all systems that are serving
keys to the same devices.

Required
Optional.

Note: This property does not need to be used.

Values

true The encrypted tape can be read by an instance of Security
Key Lifecycle Manager for z/OS running on the z/OS
Platform.

Appendix B. Configuration Properties Files 143

false Default. The encrypted tape can only be read by an
instance of Security Key Lifecycle Manager for z/OS
running on the z/OS platform if the Security Key Lifecycle
Manager for z/OS is running with Java 5.0. Instances of
Security Key Lifecycle Manager for z/OS cannot use the
z/OS encrypted key support as provided by ICSF and
zSeries hardware assisted cryptography.

144 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Appendix C. Quick Start Guides

This topic provides instructions to guide you in getting started with setting up
Security Key Lifecycle Manager for z/OS and different storage devices.

Quick Start Guide for TS1120, TS1130, and TS1140 Tape Drives
Get started with a basic configuration for TS1120, TS1130, and TS1140 Tape Drives.

The Security Key Lifecycle Manager for z/OS works with IBM encryption-enabled
tape drives and system storage devices. The product helps in generating,
protecting, storing, and maintaining encryption keys that are used to encrypt
information being written to and decrypt information being read from devices.

This document shows how quickly you can install Security Key Lifecycle Manager
for z/OS with TS1120, TS1130, and TS1140 tape drives and how easy it can be to
set up and deploy. Because the JCEKS keystore type is the easiest and most
transportable of the keystores supported, the steps below use this keystore type. If
you want more information about a particular step or other supported keystore
types, see the “Which Keystore is Right for You” on page 36.

Using Security Key Lifecycle Manager for z/OS with TS1120,
TS1130, and TS1140 Tape Drives

Get started with using Security Key Lifecycle Manager for z/OS with TS1120,
TS1130, and TS1140 Tape Drives.

Before you begin

Ensure you have the following:
v Java 5.0 SR5 or 6.0 GA and above. Java is available at http://www-03.ibm.com/

systems/z/os/zos/tools/java/
v The unrestricted policy files for Java. The files are available at

https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk.

Procedure
1. Install the Security Key Lifecycle Manager for z/OS as instructed in the

Program Directory document. See, Program Directory for IBM Security Key
Lifecycle Manager for z/OS. The following files are installed:
v /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos - sample configuration

file.
v hlq.SCKLSAMP(ISKLM) - sample file that can be used to configure Security Key

Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(ISKLMENV) - sample file that can be used to configure Security

Key Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(CKLJSMF) - sample JCL to extract SMF records to an XML file.
v CKLENV (ISKLMENV) - sample shell script file that includes configuration

variables to run Security Key Lifecycle Manager for z/OS with Java 5.0.
v CLIPROC (ISKLM) - sample file to run Security Key Lifecycle Manager for

z/OS under JZOS.

© Copyright IBM Corp. 2006, 2011 145

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www-03.ibm.com/systems/z/os/zos/tools/java/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.

v CKLJSMF (ISKLMSMF) - sample JCL to unload SMF audit records.
2. Create a directory /u/isklmsrv.
3. Change directory to /u/isklmsrv.
4. Copy the sample file /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos to

/u/isklmsrv.
5. Ensure that your path is set to Java.
6. Create a JCEKS Keystore.

Security Key Lifecycle Manager for z/OS needs a keystore with a certificate
and private key. This certificate will be used to secure communications among
the Security Key Lifecycle Manager for z/OS Servers as well as protecting the
data key on the tape. This keytool command creates a new JCEKS keystore
called ISKLMKeys.jck and populates it with a certificate and private key with
the alias of isklmcert. This certificate will be valid for one year.
a. Use the command:

keytool -keystore ISKLMKeys.jck -storetype jceks -genkey -alias
isklmcert -keyAlg RSA -keysize 2048 –validity 365 -storepass
"somesecretphrase"

When you issue this command, it prompts you for information it uses to
create a distinguished name to put in the certificate. The prompts, with
sample responses, look similar to these:
What is your first and last name? [Unknown]: isklmcert
What is the name of your organizational unit? [Unknown]: ISKLM
What is the name of your organization? [Unknown]: IBM
What is the name of your City or Locality? [Unknown]: Austin
What is the name of your State or Province? [Unknown]: TX
What is the two-letter country code for this unit? [Unknown]: US
Is CN=isklmcert, OU=ISKLM, O=IBM, L=Austin, ST=TX, C=US correct?(type "yes" or "no"):

b. Type yes and press Enter.
7. Modify the Security Key Lifecycle Manager for z/OS Server Configuration

Properties File.
Security Key Lifecycle Manager for z/OS requires two properties to be set
based on the alias used in the previous step.
a. Edit the ISKLMConfig.properties.zos file and add the following entries:

drive.default.alias1 = isklmcert

drive.default.alias2 = isklmcert

drive.acceptUnknownDrives=true

b. Save and close the ISKLMConfig.properties.zos file.
8. Add /usr/lpp/ISKLM/IBMSKLM.jar to your classpath.
9. Start theSecurity Key Lifecycle Manager for z/OS server using this command:

java com.ibm.ltklm.ISKLMServer /u/isklmsrv/ISKLMConfig.properties.zos

Quick Start Guide for LTO Ultrium 4 and LTO Ultrium 5
Get started with a basic configuration for LTO Ultrium 4 and LTO Ultrium 5.

The Security Key Lifecycle Manager for z/OS works with IBM encryption-enabled
tape drives and system storage devices. The product helps in generating,
protecting, storing, and maintaining encryption keys that are used to encrypt
information being written to and decrypt information being read from devices.

This document shows how quickly you can install Security Key Lifecycle Manager
for z/OS with LTO Ultrium 4 and LTO Ultrium 5 and how easy it can be to set up
and deploy. Because the JCEKS keystore type is the easiest and most transportable

146 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

of the keystores supported, the steps below use this keystore type. If you want
more information about a particular step or other supported keystore types, see the
“Which Keystore is Right for You” on page 36.

Using Security Key Lifecycle Manager for z/OS with LTO
Ultrium 4 and LTO 5

The following instructions describe how to get started with using Security Key
Lifecycle Manager for z/OS with LTO Ultrium 4 and LTO Ultrium 5.

Before you begin

Ensure you have the following:
v Java 5.0 SR5 or 6.0 GA and above. Java is available at http://www-03.ibm.com/

systems/z/os/zos/tools/java/
v The unrestricted policy files for Java. The files are available at

https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk.

Procedure
1. Install the Security Key Lifecycle Manager for z/OS as instructed in the

Program Directory document. See, Program Directory for IBM Security Key
Lifecycle Manager for z/OS. The following files will be installed:
v /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos - sample

configuration file.
v hlq.SCKLSAMP(ISKLM) - sample file that can be used to configure Security

Key Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(ISKLMENV) - sample file that can be used to configure Security

Key Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(CKLJSMF) - sample JCL to extract SMF records to an XML file.
v CKLENV (ISKLMENV) - sample shell script file that includes configuration

variables to run Security Key Lifecycle Manager for z/OS with Java 5.0.
v CLIPROC (ISKLM) - sample file to run Security Key Lifecycle Manager for

z/OS under JZOS.
v CKLJSMF (ISKLMSMF) - sample JCL to unload SMF audit records.

2. Create a directory /u/isklmsrv.
3. Change directories to /u/isklmsrv.
4. Copy sample file /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos to

/u/isklmsrv.
5. Ensure that your path is set to Java.
6. Create a JCEKS Keystore.

Security Key Lifecycle Manager for z/OS needs a keystore with a certificate
and private key. This certificate will be used to secure communications among
the Security Key Lifecycle Manager for z/OS Servers as well as protecting the
data key on the tape. This keytool command creates a new JCEKS keystore
called ISKLMKeys.jck and populates it with a certificate and private key with
the alias of isklmcert. This certificate will be valid for one year.
a. Use the command:

keytool -keystore ISKLMKeys.jck -storetype jceks -genkey -alias
isklmcert -keyAlg RSA -keysize 2048 –validity 365 -storepass
"somesecretphrase"

Appendix C. Quick Start Guides 147

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www-03.ibm.com/systems/z/os/zos/tools/java/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.

When you issue this command, it prompts you for information it uses to
create a distinguished name to put in the certificate. The prompts, with
sample responses, look similar to these:
What is your first and last name? [Unknown]: isklmcert
What is the name of your organizational unit? [Unknown]: ISKLM
What is the name of your organization? [Unknown]: IBM
What is the name of your City or Locality? [Unknown]: Austin
What is the name of your State or Province? [Unknown]: TX
What is the two-letter country code for this unit? [Unknown]: US
Is CN=isklmcert, OU=ISKLM, O=IBM, L=Austin, ST=TX, C=US correct?(type "yes" or "no"):

b. Type yes and press Enter.
7. Generate encryption keys.

For LTO encryption, Security Key Lifecycle Manager for z/OS needs a number
of symmetric keys to be pre-generated and stored in a keystore. This keytool
command generates 32 256-bit AES keys and stores them in the keystore
created in the previous step.
a. Run this command from the Security Key Lifecycle Manager for z/OS

directory to have the keystore file created in that directory.
keytool –keystore ISKLMKeys.jck –storetype jceks –genseckey –keyAlg
aes –keysize 256 –aliasrange key00-1f

The resulting keys will have the names key000000000000000000 through
key00000000000000001f.
This command prompts you for a keystore password to access the
keystore. Enter the desired password and press Enter. However, when
prompted for a key password, just press Enter. Do not type in a new or
different password. This will cause the key password to be the same as the
keystore password. Please note the keystore password entered here as it
will be needed later when starting the Security Key Lifecycle Manager for
z/OS.

8. Modify the Security Key Lifecycle Manager for z/OS Server Configuration
Properties File.
a. Edit the ISKLMConfig.properties.zos file and add the following entries:

symmetricKeySet=key00-1f

drive.acceptUnknownDrives=true

b. Save and close the ISKLMConfig.properties.zos file.
9. Add /usr/lpp/ISKLM/IBMSKLM.jar to your classpath.

10. Start theSecurity Key Lifecycle Manager for z/OS server using this command:
java com.ibm.ltklm.ISKLMServer /u/isklmsrv/ISKLMConfig.properties.zos

Quick Start Guide for DS8000
Get started with a basic configuration for DS8000.

The Security Key Lifecycle Manager for z/OS works with IBM encryption-enabled
tape drives and system storage devices. The product helps in generating,
protecting, storing, and maintaining encryption keys that are used to encrypt
information being written to and decrypt information being read from devices.

This document shows how quickly you can install Security Key Lifecycle Manager
for z/OS with DS8000 and how easy it can be to set up and deploy. Because the
JCEKS keystore type is the easiest and most transportable of the keystores
supported, the steps below use this keystore type. If you want more information
about a particular step or other supported keystore types, see the “Which Keystore
is Right for You” on page 36.

148 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Using Security Key Lifecycle Manager for z/OS with DS8000
The following instructions describe how to get started with using Security Key
Lifecycle Manager for z/OS with DS8000.

Before you begin

Ensure you have the following:
v Java 5.0 SR5 or 6.0 GA and above. Java is available at http://www-03.ibm.com/

systems/z/os/zos/tools/java/
v The unrestricted policy files for Java. The files are available at

https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=jcesdk.

Procedure
1. Install the Security Key Lifecycle Manager for z/OS as instructed in the

Program Directory document. See, Program Directory for IBM Security Key
Lifecycle Manager for z/OS. The following files will be installed:
v /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos - sample configuration

file.
v hlq.SCKLSAMP(ISKLM) - sample file that can be used to configure Security Key

Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(ISKLMENV) - sample file that can be used to configure Security

Key Lifecycle Manager for z/OS to work with JZOS.
v hlq.SCKLSAMP(CKLJSMF) - sample JCL to extract SMF records to an XML file.
v CKLENV (ISKLMENV) - sample shell script file that includes configuration

variables to run Security Key Lifecycle Manager for z/OS with Java 5.0.
v CLIPROC (ISKLM) - sample file to run Security Key Lifecycle Manager for

z/OS under JZOS.
v CKLJSMF (ISKLMSMF) - sample JCL to unload SMF audit records.

2. Create a directory /u/isklmsrv.
3. Change directories to /u/isklmsrv.
4. Copy sample file /usr/lpp/ISKLM/samples/ISKLMConfig.properties.zos to

/u/isklmsrv.
5. Ensure that your path is set to Java.
6. Create a JCEKS Keystore.

Security Key Lifecycle Manager for z/OS needs a keystore with a certificate
and private key. This certificate will be used to secure communications among
the Security Key Lifecycle Manager for z/OS Servers as well as protecting the
data key on the tape. This keytool command creates a new JCEKS keystore
called ISKLMKeys.jck and populates it with a certificate and private key with
the alias of isklmcert. This certificate will be valid for one year.
a. Use the command:

keytool -keystore ISKLMKeys.jck -storetype jceks -genkey -alias
isklmcert -keyAlg RSA -keysize 2048 –validity 365 -storepass
"somesecretphrase"

When you issue this command, it prompts you for information it uses to
create a distinguished name to put in the certificate. The prompts, with
sample responses, look similar to these:
What is your first and last name? [Unknown]: isklmcert
What is the name of your organizational unit? [Unknown]: ISKLM
What is the name of your organization? [Unknown]: IBM
What is the name of your City or Locality? [Unknown]: Austin

Appendix C. Quick Start Guides 149

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www-03.ibm.com/systems/z/os/zos/tools/java/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk.

What is the name of your State or Province? [Unknown]: TX
What is the two-letter country code for this unit? [Unknown]: US
Is CN=isklmcert, OU=ISKLM, O=IBM, L=Austin, ST=TX, C=US correct?(type "yes" or "no"):

b. Type yes and press Enter.
7. Ensure the configuration file has the entry ds8k.acceptUnknownDrives=true.

See, “Creating Security Key Lifecycle Manager for z/OS configuration file” on
page 86.

8. Add /usr/lpp/ISKLM/IBMSKLM.jar to your classpath.
9. Start theSecurity Key Lifecycle Manager for z/OS server using this command:

java com.ibm.ltklm.ISKLMServer /u/isklmsrv/ISKLMConfig.properties.zos

150 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Appendix D. Frequently Asked Questions
Can some combination of application-based key management and system- or
library-managed encryption be used?

No. Currently, Tivoli Storage Manager is the only application that provides
application-managed tape encryption for TS1120, TS1130, and TS1140 tape
drives. When application-managed encryption is used, the encryption is
transparent at the system and library layers. Likewise, when system- or
library-managed encryption is used, the process is transparent at the other
layers. Each method of encryption management is exclusive of the others. For
system-managed encryption and library-managed encryption, the applications
need not be changed in any way.

Must the Security Key Lifecycle Manager for z/OS be installed and running
on every system that might generate a request to encrypt or decrypt a
tape?

For library- or system-managed encryption, the system where the tape drive
write request originates need not be where the Security Key Lifecycle Manager
for z/OS is running. An instance of Security Key Lifecycle Manager for z/OS
does not have to be running on every system from which an encrypting tape
drive is accessed.

Since RACF keyrings do not have a password, what should the following
statements have coded for a password value?

Either omit these three statements from the configuration properties file or
code them as follows:

config.keystore.password = password
TransportListener.ssl.keystore.password = password
TransportListener.ssl.truststore.password = password

Where password is, literally, password.

How do I know what keystore to choose?
The keystore choice is dependent upon the system on which the Security Key
Lifecycle Manager for z/OS is running. Different platforms have different,
platform-specific features (often tied to the hardware crypto support on those
platforms). These differences manifest themselves in the keystore choice. When
the platform where the Security Key Lifecycle Manager for z/OS runs is
chosen with multiple Security Key Lifecycle Manager for z/OS running, then
the keystore type must be chosen.

If I include the "drive.acceptUnknownDrives = True" parameter, should I
still include the "config.drivetable.file.url = FILE:/filename" parameter
in the configuration file?

config.drivetable.file.url must always be specified. It is where the drive
information is placed. If you set drive.acceptUnknownDrives = True, specify
the drive.default.alias1 and drive.default.alias2 variables to the correct
certificate alias/key label.

Is FILE:/filename the correct syntax for the config.drivetable.file.url
property? FILE:///filename appears in the sample file, and FILE:../ in the
description.

The examples are correct. This syntax is a URL specification and is not what
people normally expect for a directory structure specification.

© Copyright IBM Corp. 2006, 2011 151

Does the Security Key Lifecycle Manager for z/OS perform any Certificate
Revocation List (CRL) checking?

No, the Security Key Lifecycle Manager for z/OS does not perform any CRL
checking

What happens when the certificate being used to encrypt the tapes expires?
Will the Security Key Lifecycle Manager for z/OS read previously encrypted
tapes?

It does not matter toSecurity Key Lifecycle Manager for z/OS if the certificate
has expired. It continues to honor these certificates and read previously
encrypted tapes. However the expired certificate must remain in the keystore
in order for previously encrypted tapes to be read or appended.

Will the Security Key Lifecycle Manager for z/OS require certificate
renaming on renewal?

The Security Key Lifecycle Manager for z/OS is configured by default to honor
new key requests with expired certificates. When the Security Key Lifecycle
Manager for z/OS is configured this way certificate renewal is not required. If
this function is disabled and this private key/certificate pair must still be used
for new key requests, then the user must renew the certificate. The certificate
alone (validity dates) would be renewed but not the associated keys.

Will later versions of Security Key Lifecycle Manager for z/OS still read
the encrypted tapes created with earlier versions of the software?

Yes. The Security Key Lifecycle Manager for z/OS reads certificates regardless
of release.

152 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2011 153

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

154 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 155

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries,
or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

156 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Glossary

This glossary includes terms and definitions related to Security Key Lifecycle Manager for z/OS.

This glossary defines the special terms,
abbreviations, and acronyms used in this
publication and other related publications.

AES Advanced Encryption Standard. A block
cipher adopted as an encryption standard
by the US government.

alias See key label.

certificate
A digital document that binds a public
key to the identity of the certificate
owner, thereby enabling the certificate
owner to be authenticated.

certificate label
See key label.

certificate store
See keystore.

DK Data Key. An alphanumeric string used to
encrypt data.

EEDK Externally Encrypted Data Key. A Data
Key that has been encrypted (wrapped)
by a Key Encryption Key prior to being
stored in the data cartridge. See KEK.

EEFMT2
Enterprise Encryption Format. AES 256-bit
encrypted data written recorded at the
performance and capacity format used by
the native 3592 Model E05.

encryption
The conversion of data into a cipher. A
key is required to encrypt and decrypt the
data. Encryption provides protection from
persons or software that attempt to access
the data without the key.

KEK Key Encrypting Key. An alphanumeric,
asymmetric key used to encrypt the Data
Key. See EEDK.

key label
A unique identifier used to match the
EEDK with the private key (KEK)
required to unwrap the protected
symmetric data key. Also called alias or
certificate label depending on which
keystore is used.

key ring
See keystore.

keystore
A database of private keys and their
associated X.509 digital certificate chains
used to authenticate the corresponding
public keys. Also called certificate store or
key ring in some environments.

PKDS Public Key Data Set. Also PKA
cryptographic Key Data Set.

private key
One key in an asymmetric key pair,
typically used for decryption. The
Security Key Lifecycle Manager for z/OS
uses private keys to unwrap protected
AES data keys prior to decryption.

public key
One key in an asymmetric key pair,
typically used for encryption. The
Security Key Lifecycle Manager for z/OS
uses public keys to wrap (protect) AES
data keys prior to storing them on the
tape cartridge.

rekey The process of changing the asymmetric
Key Encrypting Key (KEK) that protects
the Data Key (DK) stored on an already
encrypted tape, thereby allowing different
entities access to the data.

RSA Rivest-Shamir-Adleman algorithm. A
system for asymmetric, public-key
cryptography used for encryption and
authentication. It was invented in 1977 by
Ron Rivest, Adi Shamir, and Leonard
Adleman. The security of the system
depends on the difficulty of factoring the
product of two large prime numbers.

© Copyright IBM Corp. 2006, 2011 157

158 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

Index

A
accessibility xi
administration tasks

Security Key Lifecycle Manager for
z/OS 89

application-managed
planning 21

asymmetric encryption 5
audit

attributes 124
configuration parameters 117
events 125
format 123
overview 117
points 123
records 15, 117

Audit.event.outcome 118
Audit.event.types 118
Audit.eventQueue.max 119
Audit.handler.class 118
Audit.handler.file.directory 119
Audit.handler.file.multithreads 120
Audit.handler.file.name 120
Audit.handler.file.size 119
Audit.handler.file.threadlifespan 120

C
certificate

obtaining from business partner 47
certificates

obtaining 46
using 46

command line interface 92
commands 92

commands
command line interface 92

components
Security Key Lifecycle Manager for

z/OS 2
configuration

basics 82
hardware cryptography 82
LTO 87
properties 84
Security Key Lifecycle Manager for

z/OS 79
server properties 133
single-server 34
software cryptography 82
strategies 79
two servers 35

configuration file
creating 86
setting up 64

configuring
SMF audit log 121
system management facilities log 121

crypto hardware 45

D
data keys 5
debug 137

server problems 104
device table

updating 79
digital certificates 46
disaster recovery site

planning 39
disk drives, supported 17
DS8000

installing 25

E
encryption

application-managed 11
IBM service setup procedure 24
key encrypting key 5
key paths 12
key wrapping 5
keys 5
library-managed 14
private key 5
public key 5
symmetric encryption 5
system-managed 12

encryption keys
algorithms 5
DS8000 26
LTO 26
TS1120 26
TS1130 26
TS1140 26

errors 106
example 48, 50, 53

setting up digital certificates 47
externally encrypted data key 5

F
files

configuration properties 133
FIPS 140-2 4
frequently asked questions 151

H
hardware cryptography

configuration requirements 82
planning 45

hardware requirements 17

I
IBM 3592 Tape System support xii

device drivers xii
I/O connectivity xiii
IBM tape storage publications xii

IBM 3592 Tape System support
(continued)

network integration and deployment
services xii

SAN fabric xiii
vendor support xiii

IBM storage media
support URL xii

in-band key path 13
installation

Java SDK 43
keystores 43
Security Key Lifecycle Manager for

z/OS 43
installation example

Java keytool and JCEKS 48
JCECCAKS keystore with the Java

hwkeytool 50
JCECCARACFKS keystore 53
JCERACFKS 53

installation process
DS8000 25
LTO 4 25
LTO 5 25
TS1120 24
TS1130 24
TS1140 24

installing
DS8000 25

ISKLMConfig.properties.zos 133

J
Java

publications and information xii
Java keytool

using with JCEKS 48
Java levels 88
Java SDK

installing 43
JCECCAKS keystore

using with Hwkeytool 50
JCERACFKS

example 53

K
key groups

creating 76
managing 76

key label
default alias 80

key paths 12
keys 36

generating for LTO 72
overview 4

keystore
managing 38
planning 36

keystore considerations 26

© Copyright IBM Corp. 2006, 2011 159

keystore data
backing up 33

keystore passwords
changing 74
generating 74

keystores 36

L
library-managed

planning 23
library-managed encryption 14
logs

viewing
STDERR 103
STDOUT 103

LTO
configuring 87
keys and aliases 72

M
managing

certificates 38
keys 38

messages 110
add drive 110
admin keystore 115
archive log file 110
audit log file 115
delete drive entry 111
file name 111
file size limit 112
import 111
invalid input 112
invalid SSL port number 112
load keystore 115
load transport keystore 116
server failed to start 114
SSL port number 113
sync failed 114
synchronizing data 112
TCP port number 113, 114

metadata
using 127

migration
Encryption Key Manager to Security

Key Lifecycle Manager for z/OS 89

O
out-of-band key path 13

P
PDF, printing xi
plan

application-managed encryption 21
encryption tasks 20
library-managed encryption 23
Security Key Lifecycle Manager for

z/OS environment 17
system-managed encryption 21

planning considerations 20
application-managed 21

planning considerations (continued)
library-managed 23
system-managed 21

prerequisites 19
hardware 17
software 17
z/OS 17
z/VM 19

private
certificate 47
generating 47

private key
certificate 46
creating 46

private keys 40
problem determination 99

errors 106
files 102

production mode 67
properties file

configuring server side 133
property

Audit.handler.class 118
property settings

server configuration file 133
public

certificate 47
generating 47

public key
certificate 46
creating 46
obtaining 47

public keys 40
publications ix

3494 Tape Library x
3584 Tape Library ix
3592 Tape System ix
3953 Tape Frame/Library Manager x
Fibre Channel x
FICON x
IBM tape storage xii
other publications xi
printing as PDF xi
Redbooks xiii
related software x
Tivoli software library xi
TS7700 ix
zSeries/S390 x

Q
quick start guide 145

DS8000 148
LTO Ultrium 4 146
LTO Ultrium 5 146
TS1120 145
TS1130 145
TS1140 145

R
redundancy 34
reported errors 106
requirements

hardware 17
software 17

resolving problems 106

S
sample files 131

server configuration properties
file 131

startup daemon script 131
separate configuration 35
server

single-server configurations 34
synchronizing 80
two-server configurations 35

server configurations 34
server problems

debugging 104
set up

communicate with tape drives 61
shell script 61

setup
tasks 20

SMF audit log
configuring 121

software cryptography
configuration requirements 82

software library, Tivoli xi
software publications x
software requirements 17
startup

solving problems 91
support

contacting 109
support contacts 109
symmetric encryption 5
symmetric keys

creating for LTO 60
synchronization

server 80
system management facilities log

configuring 121
system storage device

DS8000 4
system-managed

planning 21
system-managed encryption 12

T
tape drives

3592 4
sharing 40

tape encryption
application-managed 11

terminology 157
test under USS 66
testing

under USS 66

U
unrestricted policy files 44
user ID

setting up 45

160 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

X
XML metadata file 127

Index 161

162 IBM Security Key Lifecycle Manager for z/OS Version 1.1: Planning, and User's Guide

����

Printed in USA

SC14-7628-00

	Contents
	Figures
	Tables
	About this Publication
	Intended Audience
	Publications
	Related Publications
	IBM System Storage TS1120 and TS1130 Tape Drive and Controller Publications
	IBM LTO Ultrium 4 Tape Drive Publications
	IBM System Storage TS3500 Tape Library Publications
	IBM Virtualization Engine TS7700 Publications
	IBM 3953 Tape System Publications
	IBM TotalStorage Enterprise Automated Tape Library (3494) Publications
	zSeries—S390 Publications
	IBM Fibre Channel Publications
	IBM FICON Publications
	Related Software Publications
	Other Publications

	Accessibility
	Accessing publications online
	IBM Java Security Components and Keystores
	IBM Storage Media Support
	IBM TotalStorage Enterprise Tape System 3592 Support

	Support information
	Conventions used in this publication
	Typeface conventions

	Chapter 1. Product Overview
	Security Key Lifecycle Manager for z/OS Components
	Technical overview
	Encryption-enabled 3592 and LTO tape drives
	Enterprise Storage - IBM System Storage DS8000 (2107, 242x)
	Keys overview
	Federal Information Processing Standard 140-2 Considerations
	About Encryption Keys

	Managing Encryption
	Application-Managed Tape Encryption
	System-Managed Tape Encryption
	Encryption Key Paths

	Library-Managed Tape Encryption

	Audit Records

	Chapter 2. Planning your Security Key Lifecycle Manager for z/OS Environment
	Hardware and Software Requirements
	Java requirements
	z/OS Solution Components
	z/VM Solution Components

	Encryption Setup Tasks at a Glance
	Security Key Lifecycle for z/OS Manager Setup Tasks
	Planning for Application-Managed Tape Encryption
	Planning for System-Managed Tape Encryption
	Planning for Library-Managed Tape Encryption
	TS1120, TS1130, and TS1140 Tape Drive Installation Process for Encryption
	Encryption Setup Procedure for IBM Service

	LTO Ultrium 4 Tape Drive and LTO Ultrium 5 Tape Drive Installation Process for Encryption
	DS8000 Installation Process for Encryption

	Keystore Considerations
	Importance of keys and certificates
	Backing up Keystore Data
	Multiple Key Lifecycle Manager for z/OS for redundancy
	Security Key Lifecycle Manager for z/OS Server Configurations
	Single-Server Configuration
	Two-Server Configurations

	Which Keystore is Right for You
	Managing Keystores

	Disaster Recovery Site Considerations
	Considerations for Sharing Encrypted Tapes Off-site

	Chapter 3. Installing the Security Key Lifecycle Manager for z/OS and Keystores
	Installing Java SDK and verifying the version
	Copying the unrestricted policy files
	Add the Java Hardware Provider (Only if Using ICSF)
	Setting up a user ID to run the Security Key Lifecycle Manager for z/OS
	Obtaining Digital Certificates
	Creating Your Own Public and Private Key Pair and Corresponding Certificate
	Using Certificates You Already Have
	Generating a new public and private key pair and corresponding certificate
	Obtaining a public key and corresponding certificate from a business partner
	Examples of How to Set Up Digital Certificates
	Example 1: Using the Java Keytool and JCEKS on z/OS
	Example 2: Using the JCECCAKS Keystore with the Java Hwkeytool on z/OS
	Example 3: Using the JCERACFKS or JCECCARACFKS Keystore on z/OS

	Creating Symmetric Keys for Use with LTO Ultrium 4 and LTO Ultrium 5 Drives
	Setting up the Security Key Lifecycle Manager for z/OS keystore to communicate with tape drives
	Setting up the Security Key Lifecycle Manager for z/OS configuration file
	Quick Test Running Security Key Lifecycle Manager for z/OS Under USS
	Setting up and running Security Key Lifecycle Manager for z/OS in Production Mode
	Generating Keys and Aliases for Encryption on LTO Ultrium 4 and LTO Ultrium 5
	Creating and managing key groups

	Chapter 4. Configuring the Security Key Lifecycle Manager for z/OS
	Configuration strategies
	Automatically update device table
	Global default alias (key label) for TS1120, TS1130, and TS1140 tape drive writes
	Synchronizing data between two Security Key Lifecycle Manager for z/OS servers

	If you are using hardware cryptography
	If you are not using hardware cryptography
	Configuration Basics
	Configuration Properties
	Creating Security Key Lifecycle Manager for z/OS configuration file
	Configuring Security Key Lifecycle Manager for z/OS for LTO Ultrium 4 and LTO Ultrium 5 encryption
	z/OS Java Levels
	Note about z/OS configuration steps for z/OS in-band encrypted tape drive

	Chapter 5. Administering the Security Key Lifecycle Manager for z/OS
	Migrating Encryption Key Manager to Security Key Lifecycle Manager for z/OS
	Solving Security Key Lifecycle Manager for z/OS Startup Problems

	Command Line Interface Commands

	Chapter 6. Problem Determination
	Check these important files for Security Key Lifecycle Manager for z/OS server problems
	Viewing the STDOUT and STDERR logs

	Debugging Security Key Lifecycle Manager for z/OS Server problems
	Security Key Lifecycle Manager for z/OS - Reported Errors
	Whom Do I Contact for IBM Support?
	Messages
	Failed to Add Drive
	Failed to Archive the Log File
	Failed to Delete the Drive Entry
	Failed to Import
	File Name Cannot be Null
	File Size Limit Cannot be a Negative Number
	No Data to be Synchronized
	Invalid Input
	Invalid SSL Port Number in Configuration File
	Invalid TCP Port Number in Configuration File
	Must specify SSL port number in configuration file
	Must Specify TCP Port Number in Configuration File
	Server failed to start
	Sync failed
	The specified audit log file is Read Only
	Unable to load the Admin keystore
	Unable to load the keystore
	Unable to load the transport keystore

	Chapter 7. Audit Records
	Audit Overview
	Audit Configuration Parameters
	Audit.event.types
	Audit.event.outcome
	Audit.handler.class
	Audit.eventQueue.max
	Audit.handler.file.directory
	Audit.handler.file.size
	Audit.handler.file.name
	Audit.handler.file.multithreads
	Audit.handler.file.threadlifespan

	Configuring the System Management Facilities Audit log
	Audit Record Format
	Audit points
	Audit Record Attributes

	Audited Events

	Chapter 8. Using Metadata
	Appendix A. Sample Files
	Sample startup daemon script
	Sample server configuration properties files

	Appendix B. Configuration Properties Files
	Server configuration properties file

	Appendix C. Quick Start Guides
	Quick Start Guide for TS1120, TS1130, and TS1140 Tape Drives
	Using Security Key Lifecycle Manager for z/OS with TS1120, TS1130, and TS1140 Tape Drives

	Quick Start Guide for LTO Ultrium 4 and LTO Ultrium 5
	Using Security Key Lifecycle Manager for z/OS with LTO Ultrium 4 and LTO 5

	Quick Start Guide for DS8000
	Using Security Key Lifecycle Manager for z/OS with DS8000

	Appendix D. Frequently Asked Questions
	Notices
	Glossary
	Index
	A
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	X

